Please use this identifier to cite or link to this item:
doi:10.22028/D291-42715
Title: | The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli |
Author(s): | Zhu, Jiaming Guo, Peng Zheng, Yuting Xiang, Shiqing Zhao, Yang Liu, Xinyu Fu, Chengzhang Zhang, Youming Xu, Hai Li, Ling Wang, Wenjia Wang, Mingyu |
Language: | English |
Title: | Biology |
Volume: | 13 |
Issue: | 8 |
Publisher/Platform: | MDPI |
Year of Publication: | 2024 |
Free key words: | antimicrobial resistance outer membrane porin β-lactam OmpC molecular dynamics |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | Bacterial resistance to antibiotics can lead to long-lasting, hard-to-cure infections that pose significant threats to human health. One key mechanism of antimicrobial resistance (AMR) is to reduce the antibiotic permeation of cellular membranes. For instance, the lack of outer membrane porins (OMPs) can lead to elevated AMR levels. However, knowledge on whether mutations of OMPs can also influence antibiotic susceptibility is limited. This work aims to address this question and identified an A226D mutation in OmpC, a trimeric OMP, in Escherichia coli. Surveillance studies found that this mutation is present in 50 E. coli strains for which whole genomic sequences are available. Measurement of minimum inhibition concentrations (MICs) found that this mutation leads to a 2-fold decrease in MICs for β-lactams ampicillin and piperacillin. Further survival assays confirmed the role this mutation plays in β-lactam susceptibility. With molecular dynamics, we found that the A226D mutation led to increased overall flexibility of the protein, thus facilitating antibiotic uptake, and that binding with piperacillin was weakened, leading to easier antibiotic penetration. This work reports a novel mutation that plays a role in antibiotic susceptibility, along with mechanistic studies, and further confirms the role of OMPs in bacterial tolerance to antibiotics. |
DOI of the first publication: | 10.3390/biology13080600 |
URL of the first publication: | https://doi.org/10.3390/biology13080600 |
Link to this record: | urn:nbn:de:bsz:291--ds-427155 hdl:20.500.11880/38391 http://dx.doi.org/10.22028/D291-42715 |
ISSN: | 2079-7737 |
Date of registration: | 10-Sep-2024 |
Description of the related object: | Supplementary Materials |
Related object: | https://www.mdpi.com/article/10.3390/biology13080600/s1 |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Pharmazie |
Professorship: | NT - Prof. Dr. Rolf Müller |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
biology-13-00600.pdf | 5,37 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License