Please use this identifier to cite or link to this item: doi:10.22028/D291-42725
Title: Counterfactual Explanations in the Big Picture: An Approach for Process Prediction-Driven Job-Shop Scheduling Optimization
Author(s): Mehdiyev, Nijat
Majlatow, Maxim
Fettke, Peter
Language: English
Title: Cognitive Computation
Volume: 16
Issue: 5
Pages: 2674-2700
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Explainable artificial intelligence (XAI)
Predictive process monitoring
Combinatorial optimization
Counterfactual explanations
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: In this study, we propose a pioneering framework for generating multi-objective counterfactual explanations in job-shop scheduling contexts, combining predictive process monitoring with advanced mathematical optimization techniques. Using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for multi-objective optimization, our approach enhances the generation of counterfactual explanations that illuminate potential enhancements at both the operational and systemic levels. Validated with real-world data, our methodology underscores the superiority of NSGA-II in crafting pertinent and actionable counterfactual explanations, surpassing traditional methods in both efficiency and practical relevance. This work advances the domains of explainable artificial intelligence (XAI), predictive process monitoring, and combinatorial optimization, providing an effective tool for improving automated scheduling systems’ clarity, and decision-making capabilities.
DOI of the first publication: 10.1007/s12559-024-10294-0
URL of the first publication: https://link.springer.com/article/10.1007/s12559-024-10294-0
Link to this record: urn:nbn:de:bsz:291--ds-427253
hdl:20.500.11880/38314
http://dx.doi.org/10.22028/D291-42725
ISSN: 1866-9964
1866-9956
Date of registration: 30-Aug-2024
Faculty: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Department: HW - Wirtschaftswissenschaft
Professorship: HW - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s12559-024-10294-0.pdf3,63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons