Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42710
Titel: Surrogate optimisation strategies for intraocular lens formula constant optimisation
VerfasserIn: Langenbucher, Achim
Wendelstein, Jascha
Cayless, Alan
Hoffmann, Peter
Szentmáry, Nóra
Sprache: Englisch
Titel: Acta Ophthalmologica
Bandnummer: 102
Heft: 6
Seiten: e915-e925
Verlag/Plattform: Wiley
Erscheinungsjahr: 2024
Freie Schlagwörter: formula constant optimisation
formula prediction error
lens power calculation
nonlinear iterative algorithm
performance metrics
surrogate optimisation
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Purpose: To investigate surrogate optimisation (SO) as a modern, purely datadriven, nonlinear adaptive iterative strategy for lens formula constant optimisation in intraocular lens power calculation. Methods: A SO algorithm was implemented for optimising the root mean squared formula prediction error (rmsPE, defined as predicted refraction minus achieved refraction) for the SRKT, Hoffer Q, Holladay, Haigis and Castrop formulae in a dataset of N=888 cataractous eyes with implantation of the Hoya Vivinex hydrophobic acrylic aspheric lens. A Gaussian Process estimator was used as the model, and the SO was initialised with equidistant datapoints within box constraints, and the number of iterations restricted to either 200 (SRKT, Hoffer Q, Holladay) or 700 (Haigis, Castrop). The performance of the algorithm was compared to the classical gradient-based Levenberg-Marquardt algorithm. Results: The SO algorithm showed stable convergence after fewer than 50/150 iterations (SRKT, HofferQ, Holladay, Haigis, Castrop). The rmsPE was reduced systematically to 0.4407/0.4288/0.4265/0.3711/0.3449 dioptres. The final constants were A=119.2709, pACD=5.7359, SF=1.9688, −a0=0.5914/a1=0.3570/ a2=0.1970, C=0.3171/H=0.2053/R=0.0947 for the SRKT, Hoffer Q, Holladay, Haigis and Castrop formula and matched the respective constants optimised in previous studies. Conclusion: The SO proves to be a powerful adaptive nonlinear iteration algorithm for formula constant optimisation, even in formulae with one or more constants. It acts independently of a gradient and is in general able to search within a (box) constrained parameter space for the best solution, even where there are multiple local minima of the target function.
DOI der Erstveröffentlichung: 10.1111/aos.16670
URL der Erstveröffentlichung: https://doi.org/10.1111/aos.16670
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-427100
hdl:20.500.11880/38304
http://dx.doi.org/10.22028/D291-42710
ISSN: 1755-3768
1755-375X
Datum des Eintrags: 28-Aug-2024
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Augenheilkunde
Professur: M - Univ.-Prof. Dr. Dipl.-Ing. Achim Langenbucher
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons