Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42697
Titel: Unleashing the potential of cell painting assays for compound activities and hazards prediction
VerfasserIn: Odje, Floriane
Meijer, David
von Coburg, Elena
van der Hooft, Justin J. J.
Dunst, Sebastian
Medema, Marnix H.
Volkamer, Andrea
Sprache: Englisch
Titel: Frontiers in Toxicology
Bandnummer: 6
Verlag/Plattform: Frontiers
Erscheinungsjahr: 2024
Freie Schlagwörter: cell painting assay
morphological profiling
drug development
high-throughput screening
mode of action
bio-activities predictions
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The cell painting (CP) assay has emerged as a potent imaging-based highthroughput phenotypic profiling (HTPP) tool that provides comprehensive input data for in silico prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modesof-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach.
DOI der Erstveröffentlichung: 10.3389/ftox.2024.1401036
URL der Erstveröffentlichung: https://doi.org/10.3389/ftox.2024.1401036
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-426977
hdl:20.500.11880/38296
http://dx.doi.org/10.22028/D291-42697
ISSN: 2673-3080
Datum des Eintrags: 22-Aug-2024
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Andrea Volkamer
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
ftox-2-1401036.pdf1,9 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons