Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-42697
Titel: | Unleashing the potential of cell painting assays for compound activities and hazards prediction |
VerfasserIn: | Odje, Floriane Meijer, David von Coburg, Elena van der Hooft, Justin J. J. Dunst, Sebastian Medema, Marnix H. Volkamer, Andrea |
Sprache: | Englisch |
Titel: | Frontiers in Toxicology |
Bandnummer: | 6 |
Verlag/Plattform: | Frontiers |
Erscheinungsjahr: | 2024 |
Freie Schlagwörter: | cell painting assay morphological profiling drug development high-throughput screening mode of action bio-activities predictions |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | The cell painting (CP) assay has emerged as a potent imaging-based highthroughput phenotypic profiling (HTPP) tool that provides comprehensive input data for in silico prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modesof-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach. |
DOI der Erstveröffentlichung: | 10.3389/ftox.2024.1401036 |
URL der Erstveröffentlichung: | https://doi.org/10.3389/ftox.2024.1401036 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-426977 hdl:20.500.11880/38296 http://dx.doi.org/10.22028/D291-42697 |
ISSN: | 2673-3080 |
Datum des Eintrags: | 22-Aug-2024 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Andrea Volkamer |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
ftox-2-1401036.pdf | 1,9 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons