Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42669
Titel: Physiologically based pharmacokinetic modeling of imatinib and N-desmethyl imatinib for drug-drug interaction predictions
VerfasserIn: Loer, Helena Leonie Hanae
Kovar, Christina
Rüdesheim, Simeon
Marok, Fatima Zahra
Fuhr, Laura Maria
Selzer, Dominik
Schwab, Matthias
Lehr, Thorsten
Sprache: Englisch
Titel: CPT: Pharmacometrics & Systems Pharmacology
Bandnummer: 13
Heft: 6
Seiten: 926-940
Verlag/Plattform: Wiley
Erscheinungsjahr: 2024
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The first-generation tyrosine kinase inhibitor imatinib has revolutionized the development of targeted cancer therapy and remains among the frontline treatments, for example, against chronic myeloid leukemia. As a substrate of cytochrome P450 (CYP) 2C8, CYP3A4, and various transporters, imatinib is highly susceptible to drug–drug interactions (DDIs) when co-administered with corresponding perpetrator drugs. Additionally, imatinib and its main metabolite Ndesmethyl imatinib (NDMI) act as inhibitors of CYP2C8, CYP2D6, and CYP3A4 affecting their own metabolism as well as the exposure of co-medications. This work presents the development of a parent–metabolite whole-body physiologically based pharmacokinetic (PBPK) model for imatinib and NDMI used for the investigation and prediction of different DDI scenarios centered around imatinib as both a victim and perpetrator drug. Model development was performed in PK-Sim® using a total of 60 plasma concentration–time profiles of imatinib and NDMI in healthy subjects and cancer patients. Metabolism of both compounds was integrated via CYP2C8 and CYP3A4, with imatinib additionally transported via P-glycoprotein. The subsequently developed DDI network demonstrated good predictive performance. DDIs involving imatinib and NDMI were simulated with perpetrator drugs rifampicin, ketoconazole, and gemfibrozil as well as victim drugs simvastatin and metoprolol. Overall, 12/12 predicted DDI area under the curve determined between first and last plasma concentration measurements (AUClast) ratios and 12/12 predicted DDI maximum plasma concentration (Cmax) ratios were within twofold of the respective observed ratios. Potential applications of the final model include model-informed drug development or the support of model-informed precision dosing.
DOI der Erstveröffentlichung: 10.1002/psp4.13127
URL der Erstveröffentlichung: https://doi.org/10.1002/psp4.13127
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-426690
hdl:20.500.11880/38274
http://dx.doi.org/10.22028/D291-42669
ISSN: 2163-8306
Datum des Eintrags: 14-Aug-2024
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.13127&file=psp413127-sup-0001-SupinfoS1.zip
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Pharmazie
Professur: NT - Prof. Dr. Thorsten Lehr
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons