Please use this identifier to cite or link to this item: doi:10.22028/D291-42665
Volltext verfügbar? / Dokumentlieferung
Title: Guided Docking as a Data Generation Approach Facilitates Structure-Based Machine Learning on Kinases
Author(s): Backenköhler, Michael
Groß, Joschka
Wolf, Verena
Volkamer, Andrea
Language: English
Title: Journal of Chemical Information and Modeling
Volume: 64
Issue: 10
Pages: 4009-4020
Publisher/Platform: American Chemical Society
Year of Publication: 2024
Free key words: Genetics
Ligands
Peptides And Proteins
Protein Structure
Scaffolds
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Drug discovery pipelines nowadays rely on machine learning models to explore and evaluate large chemical spaces. While including 3D structural information is considered beneficial, structural models are hindered by the availability of protein− ligand complex structures. Exemplified for kinase drug discovery, we address this issue by generating kinase-ligand complex data using template docking for the kinase compound subset of available ChEMBL assay data. To evaluate the benefit of the created complex data, we use it to train a structure-based E(3)-invariant graph neural network. Our evaluation shows that binding affinities can be predicted with significantly higher precision by models that take synthetic binding poses into account compared to ligand- or drug-target interaction models alone.
DOI of the first publication: 10.1021/acs.jcim.4c00055
URL of the first publication: https://doi.org/10.1021/acs.jcim.4c00055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Link to this record: urn:nbn:de:bsz:291--ds-426658
hdl:20.500.11880/38269
http://dx.doi.org/10.22028/D291-42665
ISSN: 1549-960X
1549-9596
Date of registration: 14-Aug-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Andrea Volkamer
MI - Prof. Dr. Verena Wolf
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.