Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42468
Titel: Surfactant stabilization of vanadium iron oxide derived from Prussian blue analog for lithium-ion battery electrodes
VerfasserIn: Bornamehr, Behnoosh
El Gaidi, Hiba
Arnold, Stefanie
Pameté, Emmanuel
Presser, Volker
Sprache: Englisch
Titel: Sustainable energy & fuels : interdisciplinary research for the development of sustainable energy technologies
Bandnummer: 7
Heft: 18
Seiten: 4514-4524
Verlag/Plattform: RSC
Erscheinungsjahr: 2023
DDC-Sachgruppe: 660 Technische Chemie
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Due to their high energy density, Li-ion batteries have become indispensable for energy storage in many technical devices. Prussian blue and its analogs are a versatile family of materials. Apart from their direct use as an alkali-ion battery electrode, they are a promising source for templating other compounds due to the presence of carbon, nitrogen, and metallic elements in their structure, ease of synthesis, and high tunability. In this study, homogeneous iron vanadate derivatization from iron vanadium Prussian blue was successfully carried out using an energy efficient infrared furnace utilizing CO2 gas. Iron-vanadate is an inherently unstable electrode material if cycled at low potentials vs. Li/Li+. Several parameters were optimized to achieve a stable electrochemical performance of this derivative, and the effect of surfactants, such as tannic acid, sodium dodecylbenzene sulfonate, and polyvinylpyrrolidone were shown with their role in the morphology and electrochemical performance. While stabilizing the performance, we demonstrate that the type and order of addition of these surfactants are fundamental for a successful coating formation, otherwise they can hinder the formation of PBA, which has not been reported previously. Step-by-step, we illustrate how to prepare self-standing electrodes for Li-ion battery cells without using an organic solvent or a fluorine-containing binder while stabilizing the electrochemical performance. A 400 mA h g−1 capacity at the specific current of 250 mA g−1 was achieved after 150 cycles while maintaining a Coulombic efficiency of 99.2% over an extended potential range of 0.01–3.50 V vs. Li/Li+.
DOI der Erstveröffentlichung: 10.1039/D3SE00854A
URL der Erstveröffentlichung: https://pubs.rsc.org/en/content/articlelanding/2023/se/d3se00854a
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-424681
hdl:20.500.11880/38115
http://dx.doi.org/10.22028/D291-42468
ISSN: 2398-4902
Datum des Eintrags: 29-Jul-2024
Drittmittel / Förderung: Deutsche Forschungsgemeinschaft DFG(), Alexander von Humboldt-Stiftung()
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Chemie
NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Volker Presser
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
d3se00854a.pdf4,41 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons