Please use this identifier to cite or link to this item: doi:10.22028/D291-42446
Title: Mibianto: ultra-efficient online microbiome analysis through k-mer based metagenomics
Author(s): Hirsch, Pascal
Molano, Leidy-Alejandra G.
Engel, Annika
Zentgraf, Jens
Rahmann, Sven
Hannig, Matthias
Müller, Rolf
Kern, Fabian
Keller, Andreas
Schmartz, Georges P.
Language: English
Title: Nucleic Acids Research
Volume: 52
Issue: W1
Pages: W407-W414
Publisher/Platform: Oxford University Press
Year of Publication: 2024
DDC notations: 004 Computer science, internet
500 Science
610 Medicine and health
Publikation type: Journal Article
Abstract: Quantifying microbiome species and composition from metagenomic assays is often challenging due to its time-consuming nature and computational complexity. In Bioinformatics, k-mer-based approaches were long established to expedite the analysis of large sequencing data and are now widely used to annotate metagenomic data. We make use of k-mer counting techniques for efficient and accurate compositional analysis of microbiota from whole metagenome sequencing. Mibianto solves this problem by operating directly on read files, without manual preprocessing or complete data exchange. It handles diverse sequencing platforms, including short single-end, paired-end, and long read technologies. Our sketch-based workflow significantly reduces the data volume transferred from the user to the server (up to 99.59% size reduction) to subsequently perform taxonomic profiling with enhanced efficiency and privacy. Mibianto offers functionality beyond k-mer quantification; it supports advanced community composition estimation, including diversity, ordination, and differential abundance analysis. Our tool aids in the standardization of computational workflows, thus supporting reproducibility of scientific sequencing studies. It is adaptable to small- and large-scale experimental designs and offers a user-friendly interface, thus making it an invaluable tool for both clinical and research-oriented metagenomic studies. Mibianto is freely available without the need for a login at: https://www.ccb.uni-saarland.de/mibianto.
DOI of the first publication: 10.1093/nar/gkae364
URL of the first publication: https://doi.org/10.1093/nar/gkae364
Link to this record: urn:nbn:de:bsz:291--ds-424466
hdl:20.500.11880/38094
http://dx.doi.org/10.22028/D291-42446
ISSN: 1362-4962
0305-1048
Date of registration: 25-Jul-2024
Faculty: M - Medizinische Fakultät
MI - Fakultät für Mathematik und Informatik
NT - Naturwissenschaftlich- Technische Fakultät
Department: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
M - Zahn-, Mund- und Kieferheilkunde
MI - Informatik
NT - Pharmazie
Professorship: M - Prof. Dr. Matthias Hannig
M - Univ.-Prof. Dr. Andreas Keller
MI - Prof. Dr. Sven Rahmann
NT - Prof. Dr. Rolf Müller
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
gkae364.pdf913,35 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons