Please use this identifier to cite or link to this item:
doi:10.22028/D291-42383
Title: | Enhancing machine learning classification of microstructures: A workflow study on joining image data and metadata in CNN |
Author(s): | Stiefel, Marie Müller, Martin Bachmann, Björn-Ivo Guitar, Maria Agustina Nayak, Ullal Pranav Mücklich, Frank |
Language: | English |
Title: | MRS Communications |
Volume: | 14 |
Issue: | 3 |
Pages: | 363-371 |
Publisher/Platform: | Springer Nature |
Year of Publication: | 2024 |
Free key words: | Artificial intelligence Data/database Computation/computing Machine learning Microstructure |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | In view of the paradigm shift toward data-driven research in materials science and engineering, handling large amounts of data becomes increasingly important. The application of FAIR (fndable, accessible, interoperable, reusable) data principles emphasizes the importance of metadata describing datasets. We propose a novel data processing and machine learning (ML) pipeline to extract metadata from micrograph image fles, then combine image data and their metadata for microstructure classifcation with a deep learning approach compared to a classic ML approach. The ML model attained excellent performances with and without metadata and bears potential for performance improvement of further use cases within the community. |
DOI of the first publication: | 10.1557/s43579-024-00549-0 |
URL of the first publication: | https://link.springer.com/article/10.1557/s43579-024-00549-0 |
Link to this record: | urn:nbn:de:bsz:291--ds-423836 hdl:20.500.11880/38041 http://dx.doi.org/10.22028/D291-42383 |
ISSN: | 2159-6867 |
Date of registration: | 12-Jul-2024 |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Materialwissenschaft und Werkstofftechnik |
Professorship: | NT - Prof. Dr. Frank Mücklich |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
s43579-024-00549-0.pdf | 1,63 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License