Please use this identifier to cite or link to this item: doi:10.22028/D291-42383
Title: Enhancing machine learning classification of microstructures: A workflow study on joining image data and metadata in CNN
Author(s): Stiefel, Marie
Müller, Martin
Bachmann, Björn-Ivo
Guitar, Maria Agustina
Nayak, Ullal Pranav
Mücklich, Frank
Language: English
Title: MRS Communications
Volume: 14
Issue: 3
Pages: 363-371
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Artificial intelligence
Data/database
Computation/computing
Machine learning
Microstructure
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: In view of the paradigm shift toward data-driven research in materials science and engineering, handling large amounts of data becomes increasingly important. The application of FAIR (fndable, accessible, interoperable, reusable) data principles emphasizes the importance of metadata describing datasets. We propose a novel data processing and machine learning (ML) pipeline to extract metadata from micrograph image fles, then combine image data and their metadata for microstructure classifcation with a deep learning approach compared to a classic ML approach. The ML model attained excellent performances with and without metadata and bears potential for performance improvement of further use cases within the community.
DOI of the first publication: 10.1557/s43579-024-00549-0
URL of the first publication: https://link.springer.com/article/10.1557/s43579-024-00549-0
Link to this record: urn:nbn:de:bsz:291--ds-423836
hdl:20.500.11880/38041
http://dx.doi.org/10.22028/D291-42383
ISSN: 2159-6867
Date of registration: 12-Jul-2024
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Frank Mücklich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s43579-024-00549-0.pdf1,63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons