Please use this identifier to cite or link to this item: doi:10.22028/D291-42288
Volltext verfügbar? / Dokumentlieferung
Files for this record:
There are no files associated with this item.
Title: Visual Coherence Loss for Coherent and Visually Grounded Story Generation
Author(s): Hong, Xudong
Demberg, Vera UdsID
Sayeed, Asad
Zheng, Qiankun
Schiele, Bernt
Editor(s): Can, Burcu
Language: English
In:
Title: The 8th Workshop on Representation Learning for NLP (RepL4NLP 2023) - proceedings of the workshop : July 13, 2023 : ACL 2023
Pages: 9456–9470
Publisher/Platform: ACL
Year of Publication: 2023
Place of publication: Stroudsburg, PA
Place of the conference: Toronto, Canada
DDC notations: 004 Computer science, internet
400 Language, linguistics
Publikation type: Conference Paper
Abstract: Local coherence is essential for long-form text generation models. We identify two important aspects of local coherence within the visual storytelling task: (1) the model needs to represent re-occurrences of characters within the image sequence in order to mention them correctly in the story; (2) character representations should enable us to find instances of the same characters and distinguish different characters. In this paper, we propose a loss function inspired by a linguistic theory of coherence for self-supervised learning for image sequence representations. We further propose combining features from an object and a face detector to construct stronger character features. To evaluate input-output relevance that current reference-based metrics don’t measure, we propose a character matching metric to check whether the models generate referring expressions correctly for characters in input image sequences. Experiments on a visual story generation dataset show that our proposed features and loss function are effective for generating more coherent and visually grounded stories.
DOI of the first publication: 10.18653/v1/2023.findings-acl.603
URL of the first publication: https://aclanthology.org/2023.findings-acl.603/
Link to this record: urn:nbn:de:bsz:291--ds-422881
hdl:20.500.11880/37959
http://dx.doi.org/10.22028/D291-42288
ISBN: 978-1-959429-77-7
Date of registration: 27-Jun-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Vera Demberg
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.