Please use this identifier to cite or link to this item: doi:10.22028/D291-42228
Title: Improved carbide volume fraction estimation in as-cast HCCI alloys using machine learning techniques
Author(s): Nayak, U. Pranav
Müller, Martin
Quartz, Noah
Guitar, M. Agustina
Mücklich, Frank
Language: English
Title: Computational Materials Science
Volume: 240
Publisher/Platform: Elsevier
Year of Publication: 2024
Free key words: Carbide volume fraction
High chromium cast iron
Machine learning
Metallography
Microstructure
Phase quantification
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: An improved approach is presented for the estimation of carbide volume fraction (CVF) in as-cast High Chromium Cast Iron (HCCI) alloys using Machine Learning (ML) techniques. The limitations of existing formulae for CVF estimation in HCCI alloys, which relied on a limited number of alloy compositions, are addressed. A comprehensive dataset comprising 320 distinct alloy compositions from 60 different sources was compiled. ML models trained on this dataset revealed the significant influence of carbon (C), chromium (Cr), and molybdenum (Mo) on CVF determination. By leveraging ML algorithms, a predictive model was developed that offers enhanced accuracy in estimating CVF across a wider range of compositions. This ML-based approach provides researchers with a valuable tool for determining CVF in as-cast HCCI alloys, minimizing the need for resourceintensive and time-consuming experimental procedures. The results obtained demonstrate improved CVF estimation accuracy and broader applicability, thus facilitating more efficient and reliable CVF determination in HCCI alloys.
DOI of the first publication: 10.1016/j.commatsci.2024.113013
URL of the first publication: https://doi.org/10.1016/j.commatsci.2024.113013
Link to this record: urn:nbn:de:bsz:291--ds-422289
hdl:20.500.11880/37912
http://dx.doi.org/10.22028/D291-42228
ISSN: 0927-0256
Date of registration: 21-Jun-2024
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Frank Mücklich
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S0927025624002349-main.pdf2,25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons