Please use this identifier to cite or link to this item:
doi:10.22028/D291-42091
Title: | Overview: Machine Learning for Segmentation and Classification of Complex Steel Microstructures |
Author(s): | Müller, Martin Stiefel, Marie Bachmann, Björn-Ivo Britz, Dominik Mücklich, Frank |
Language: | English |
Title: | Metals |
Volume: | 14 |
Issue: | 5 |
Publisher/Platform: | MDPI |
Year of Publication: | 2024 |
Free key words: | artificial intelligence machine learning microstructure analysis metallography correlative microscopy steel |
DDC notations: | 500 Science |
Publikation type: | Journal Article |
Abstract: | The foundation of materials science and engineering is the establishment of process–microstructure–property links, which in turn form the basis for materials and process development and optimization. At the heart of this is the characterization and quantification of the material’s microstructure. To date, microstructure quantification has traditionally involved a human deciding what to measure and included labor-intensive manual evaluation. Recent advancements in artificial intelligence (AI) and machine learning (ML) offer exciting new approaches to microstructural quantification, especially classification and semantic segmentation. This promises many benefits, most notably objective, reproducible, and automated analysis, but also quantification of complex microstructures that has not been possible with prior approaches. This review provides an overview of ML applications for microstructure analysis, using complex steel microstructures as examples. Special emphasis is placed on the quantity, quality, and variance of training data, as well as where the ground truth needed for ML comes from, which is usually not sufficiently discussed in the literature. In this context, correlative microscopy plays a key role, as it enables a comprehensive and scale-bridging characterization of complex microstructures, which is necessary to provide an objective and well-founded ground truth and ultimately to implement ML-based approaches. |
DOI of the first publication: | 10.3390/met14050553 |
URL of the first publication: | https://doi.org/10.3390/met14050553 |
Link to this record: | urn:nbn:de:bsz:291--ds-420918 hdl:20.500.11880/37723 http://dx.doi.org/10.22028/D291-42091 |
ISSN: | 2075-4701 |
Date of registration: | 28-May-2024 |
Description of the related object: | Supplementary Materials |
Related object: | https://www.mdpi.com/article/10.3390/met14050553/s1 |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät |
Department: | NT - Materialwissenschaft und Werkstofftechnik |
Professorship: | NT - Prof. Dr. Frank Mücklich |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
metals-14-00553-v2.pdf | 4,73 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License