Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42091
Titel: Overview: Machine Learning for Segmentation and Classification of Complex Steel Microstructures
VerfasserIn: Müller, Martin
Stiefel, Marie
Bachmann, Björn-Ivo
Britz, Dominik
Mücklich, Frank
Sprache: Englisch
Titel: Metals
Bandnummer: 14
Heft: 5
Verlag/Plattform: MDPI
Erscheinungsjahr: 2024
Freie Schlagwörter: artificial intelligence
machine learning
microstructure analysis
metallography
correlative microscopy
steel
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The foundation of materials science and engineering is the establishment of process–microstructure–property links, which in turn form the basis for materials and process development and optimization. At the heart of this is the characterization and quantification of the material’s microstructure. To date, microstructure quantification has traditionally involved a human deciding what to measure and included labor-intensive manual evaluation. Recent advancements in artificial intelligence (AI) and machine learning (ML) offer exciting new approaches to microstructural quantification, especially classification and semantic segmentation. This promises many benefits, most notably objective, reproducible, and automated analysis, but also quantification of complex microstructures that has not been possible with prior approaches. This review provides an overview of ML applications for microstructure analysis, using complex steel microstructures as examples. Special emphasis is placed on the quantity, quality, and variance of training data, as well as where the ground truth needed for ML comes from, which is usually not sufficiently discussed in the literature. In this context, correlative microscopy plays a key role, as it enables a comprehensive and scale-bridging characterization of complex microstructures, which is necessary to provide an objective and well-founded ground truth and ultimately to implement ML-based approaches.
DOI der Erstveröffentlichung: 10.3390/met14050553
URL der Erstveröffentlichung: https://doi.org/10.3390/met14050553
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-420918
hdl:20.500.11880/37723
http://dx.doi.org/10.22028/D291-42091
ISSN: 2075-4701
Datum des Eintrags: 28-Mai-2024
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/met14050553/s1
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Frank Mücklich
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
metals-14-00553-v2.pdf4,73 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons