Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-42091
Titel: | Overview: Machine Learning for Segmentation and Classification of Complex Steel Microstructures |
VerfasserIn: | Müller, Martin Stiefel, Marie Bachmann, Björn-Ivo Britz, Dominik Mücklich, Frank |
Sprache: | Englisch |
Titel: | Metals |
Bandnummer: | 14 |
Heft: | 5 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2024 |
Freie Schlagwörter: | artificial intelligence machine learning microstructure analysis metallography correlative microscopy steel |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | The foundation of materials science and engineering is the establishment of process–microstructure–property links, which in turn form the basis for materials and process development and optimization. At the heart of this is the characterization and quantification of the material’s microstructure. To date, microstructure quantification has traditionally involved a human deciding what to measure and included labor-intensive manual evaluation. Recent advancements in artificial intelligence (AI) and machine learning (ML) offer exciting new approaches to microstructural quantification, especially classification and semantic segmentation. This promises many benefits, most notably objective, reproducible, and automated analysis, but also quantification of complex microstructures that has not been possible with prior approaches. This review provides an overview of ML applications for microstructure analysis, using complex steel microstructures as examples. Special emphasis is placed on the quantity, quality, and variance of training data, as well as where the ground truth needed for ML comes from, which is usually not sufficiently discussed in the literature. In this context, correlative microscopy plays a key role, as it enables a comprehensive and scale-bridging characterization of complex microstructures, which is necessary to provide an objective and well-founded ground truth and ultimately to implement ML-based approaches. |
DOI der Erstveröffentlichung: | 10.3390/met14050553 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/met14050553 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-420918 hdl:20.500.11880/37723 http://dx.doi.org/10.22028/D291-42091 |
ISSN: | 2075-4701 |
Datum des Eintrags: | 28-Mai-2024 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary Materials |
In Beziehung stehendes Objekt: | https://www.mdpi.com/article/10.3390/met14050553/s1 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Materialwissenschaft und Werkstofftechnik |
Professur: | NT - Prof. Dr. Frank Mücklich |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
metals-14-00553-v2.pdf | 4,73 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons