Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-42089
Titel: | A Multidisciplinary Hyper-Modeling Scheme in Personalized In Silico Oncology: Coupling Cell Kinetics with Metabolism, Signaling Networks, and Biomechanics as Plug-In Component Models of a Cancer Digital Twin |
VerfasserIn: | Kolokotroni, Eleni Abler, Daniel Ghosh, Alokendra Tzamali, Eleftheria Grogan, James Georgiadi, Eleni Büchler, Philippe Radhakrishnan, Ravi Byrne, Helen Sakkalis, Vangelis Nikiforaki, Katerina Karatzanis, Ioannis McFarlane, Nigel J. B. Kaba, Djibril Dong, Feng Bohle, Rainer M. Meese, Eckart Graf, Norbert Stamatakos, Georgios |
Sprache: | Englisch |
Titel: | Journal of Personalized Medicine |
Bandnummer: | 14 |
Heft: | 5 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2024 |
Freie Schlagwörter: | in silico medicine in silico oncology cancer hypermodeling digital twin virtual twin computational oncology Wilms tumor non-small cell lung cancer |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary. |
DOI der Erstveröffentlichung: | 10.3390/jpm14050475 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/jpm14050475 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-420894 hdl:20.500.11880/37721 http://dx.doi.org/10.22028/D291-42089 |
ISSN: | 2075-4426 |
Datum des Eintrags: | 28-Mai-2024 |
Fakultät: | M - Medizinische Fakultät |
Fachrichtung: | M - Humangenetik M - Pathologie M - Pädiatrie |
Professur: | M - Prof. Dr. Rainer M. Bohle M - Prof. Dr. Norbert Graf M - Prof. Dr. Eckhart Meese |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
jpm-14-00475-v2.pdf | 6,82 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons