Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42089
Titel: A Multidisciplinary Hyper-Modeling Scheme in Personalized In Silico Oncology: Coupling Cell Kinetics with Metabolism, Signaling Networks, and Biomechanics as Plug-In Component Models of a Cancer Digital Twin
VerfasserIn: Kolokotroni, Eleni
Abler, Daniel
Ghosh, Alokendra
Tzamali, Eleftheria
Grogan, James
Georgiadi, Eleni
Büchler, Philippe
Radhakrishnan, Ravi
Byrne, Helen
Sakkalis, Vangelis
Nikiforaki, Katerina
Karatzanis, Ioannis
McFarlane, Nigel J. B.
Kaba, Djibril
Dong, Feng
Bohle, Rainer M.
Meese, Eckart
Graf, Norbert
Stamatakos, Georgios
Sprache: Englisch
Titel: Journal of Personalized Medicine
Bandnummer: 14
Heft: 5
Verlag/Plattform: MDPI
Erscheinungsjahr: 2024
Freie Schlagwörter: in silico medicine
in silico oncology
cancer
hypermodeling
digital twin
virtual twin
computational oncology
Wilms tumor
non-small cell lung cancer
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The massive amount of human biological, imaging, and clinical data produced by multiple and diverse sources necessitates integrative modeling approaches able to summarize all this information into answers to specific clinical questions. In this paper, we present a hypermodeling scheme able to combine models of diverse cancer aspects regardless of their underlying method or scale. Describing tissue-scale cancer cell proliferation, biomechanical tumor growth, nutrient transport, genomic-scale aberrant cancer cell metabolism, and cell-signaling pathways that regulate the cellular response to therapy, the hypermodel integrates mutation, miRNA expression, imaging, and clinical data. The constituting hypomodels, as well as their orchestration and links, are described. Two specific cancer types, Wilms tumor (nephroblastoma) and non-small cell lung cancer, are addressed as proof-of-concept study cases. Personalized simulations of the actual anatomy of a patient have been conducted. The hypermodel has also been applied to predict tumor control after radiotherapy and the relationship between tumor proliferative activity and response to neoadjuvant chemotherapy. Our innovative hypermodel holds promise as a digital twin-based clinical decision support system and as the core of future in silico trial platforms, although additional retrospective adaptation and validation are necessary.
DOI der Erstveröffentlichung: 10.3390/jpm14050475
URL der Erstveröffentlichung: https://doi.org/10.3390/jpm14050475
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-420894
hdl:20.500.11880/37721
http://dx.doi.org/10.22028/D291-42089
ISSN: 2075-4426
Datum des Eintrags: 28-Mai-2024
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Humangenetik
M - Pathologie
M - Pädiatrie
Professur: M - Prof. Dr. Rainer M. Bohle
M - Prof. Dr. Norbert Graf
M - Prof. Dr. Eckhart Meese
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
jpm-14-00475-v2.pdf6,82 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons