Please use this identifier to cite or link to this item: doi:10.22028/D291-41981
Volltext verfügbar? / Dokumentlieferung
Title: On Drinfeld modular forms of higher rank IV: Modular forms with level
Author(s): Gekeler, Ernst-Ulrich
Language: English
Title: Journal of Number Theory
Volume: 232 (2022)
Pages: 33-74
Publisher/Platform: Elsevier
Year of Publication: 2019
Free key words: Drinfeld modular forms
Eisenstein series
Compactification of moduli schemes
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: We construct and study a natural compactification Mr (N) of the moduli scheme Mr(N) for rank-r Drinfeld Fq[T]-modules with a structure of level N ∈ Fq[T]. Namely, Mr (N) = Proj Eis(N), the projective variety associated with the graded ring Eis(N) generated by the Eisenstein series of rank r and level N. We use this to define the ring Mod(N) of all modular forms of rank r and level N. It equals the integral closure of Eis(N) in their common quotient field F r(N). Modular forms are characterized as those holomorphic functions on the Drinfeld space Ωr with the right transformation behavior under the congruence subgroup Γ(N) of Γ = GL(r, Fq[T]) (“weak modular forms”) which, along with all their conjugates under Γ/Γ(N), are bounded on the natural fundamental domain F for Γ on Ωr.
DOI of the first publication: 10.1016/j.jnt.2019.04.019
URL of the first publication: https://doi.org/10.1016/j.jnt.2019.04.019
Link to this record: urn:nbn:de:bsz:291--ds-419810
hdl:20.500.11880/37567
http://dx.doi.org/10.22028/D291-41981
ISSN: 0022-314X
Date of registration: 30-Apr-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.