Please use this identifier to cite or link to this item: doi:10.22028/D291-41979
Volltext verfügbar? / Dokumentlieferung
Title: On the quantum symmetry of distance-transitive graphs
Author(s): Schmidt, Simon
Language: English
Title: Advances in Mathematics
Volume: 368
Publisher/Platform: Elsevier
Year of Publication: 2020
Free key words: Finite graphs
Graph automorphisms
Automorphism groups
Quantum automorphisms
Quantum groups
Quantum symmetries
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: In this article, we study quantum automorphism groups of distance-transitive graphs. We show that the odd graphs, the Hamming graphs H(n, 3), the Johnson graphs J(n, 2) and the Kneser graphs K(n, 2) do not have quantum symmetry. We also give a table with the quantum automorphism groups of all cubic distance-transitive graphs. Furthermore, with one graph missing, we can now decide whether or not a distance-regular graph of order ≤ 20 has quantum symmetry. Moreover, we prove that the Hoffman-Singleton graph has no quantum symmetry. On a final note, we present an example of a pair of graphs with the same intersection array (the Shrikhande graph and the 4 × 4 rook’s graph), where one of them has quantum symmetry and the other one does not.
DOI of the first publication: 10.1016/j.aim.2020.107150
URL of the first publication: https://doi.org/10.1016/j.aim.2020.107150
Link to this record: urn:nbn:de:bsz:291--ds-419792
hdl:20.500.11880/37565
http://dx.doi.org/10.22028/D291-41979
ISSN: 0001-8708
Date of registration: 30-Apr-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Jun.-Prof. Dr. Moritz Weber
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.