Please use this identifier to cite or link to this item: doi:10.22028/D291-41977
Volltext verfügbar? / Dokumentlieferung
Title: Matrix Poincaré inequalities and concentration
Author(s): Aoun, Richard
Banna, Marwa
Youssef, Pierre
Language: English
Title: Advances in Mathematics
Volume: 371
Publisher/Platform: Elsevier
Year of Publication: 2020
Free key words: Matrix concentration inequalities
Matrix Poincaré inequalities
Matrix inequalities
Functional inequalities
Strong Rayleigh measures
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: We show that any probability measure satisfying a Matrix Poincaré inequality with respect to some reversible Markov generator satisfies an exponential matrix concentration inequality depending on the associated matrix carré du champ operator. This extends to the matrix setting a classical phenomenon in the scalar case. Moreover, the proof gives rise to new matrix trace inequalities which could be of independent interest. We then apply this general fact by establishing matrix Poincaré inequalities to derive matrix concentration inequalities for Gaussian measures, product measures and for Strong Rayleigh measures. The latter represents the first instance of matrix concentration for general matrix functions of negatively dependent random variables.
DOI of the first publication: 10.1016/j.aim.2020.107251
URL of the first publication: https://doi.org/10.1016/j.aim.2020.107251
Link to this record: urn:nbn:de:bsz:291--ds-419778
hdl:20.500.11880/37563
http://dx.doi.org/10.22028/D291-41977
ISSN: 0001-8708
Date of registration: 30-Apr-2024
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.