Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-41952
Titel: | Machine Learning-Assisted Classification of Paraffin-Embedded Brain Tumors with Raman Spectroscopy |
VerfasserIn: | Klamminger, Gilbert Georg Mombaerts, Laurent Kemp, Françoise Jelke, Finn Klein, Karoline Slimani, Rédouane Mirizzi, Giulia Husch, Andreas Hertel, Frank Mittelbronn, Michel Kleine Borgmann, Felix B. |
Sprache: | Englisch |
Titel: | Brain Sciences |
Bandnummer: | 14 |
Heft: | 4 |
Verlag/Plattform: | MDPI |
Erscheinungsjahr: | 2024 |
Freie Schlagwörter: | Raman spectroscopy vibrational spectroscopy gliomas meningiomas brain metastasis tumor necrosis artificial intelligence machine learning random forest classification |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Raman spectroscopy (RS) has demonstrated its utility in neurooncological diagnostics, spanning from intraoperative tumor detection to the analysis of tissue samples peri- and postoperatively. In this study, we employed Raman spectroscopy (RS) to monitor alterations in the molecular vibrational characteristics of a broad range of formalin-fixed, paraffin-embedded (FFPE) intracranial neoplasms (including primary brain tumors and meningiomas, as well as brain metastases) and considered specific challenges when employing RS on FFPE tissue during the routine neuropathological workflow. We spectroscopically measured 82 intracranial neoplasms on CaF2 slides (in total, 679 individual measurements) and set up a machine learning framework to classify spectral characteristics by splitting our data into training cohorts and external validation cohorts. The effectiveness of our machine learning algorithms was assessed by using common performance metrics such as AUROC and AUPR values. With our trained random forest algorithms, we distinguished among various types of gliomas and identified the primary origin in cases of brain metastases. Moreover, we spectroscopically diagnosed tumor types by using biopsy fragments of pure necrotic tissue, a task unattainable through conventional light microscopy. In order to address misclassifications and enhance the assessment of our models, we sought out significant Raman bands suitable for tumor identification. Through the validation phase, we affirmed a considerable complexity within the spectroscopic data, potentially arising not only from the biological tissue subjected to a rigorous chemical procedure but also from residual components of the fixation and paraffin-embedding process. The present study demonstrates not only the potential applications but also the constraints of RS as a diagnostic tool in neuropathology, considering the challenges associated with conducting vibrational spectroscopic analysis on formalin-fixed, paraffin-embedded (FFPE) tissue. |
DOI der Erstveröffentlichung: | 10.3390/brainsci14040301 |
URL der Erstveröffentlichung: | https://doi.org/10.3390/brainsci14040301 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-419527 hdl:20.500.11880/37542 http://dx.doi.org/10.22028/D291-41952 |
ISSN: | 2076-3425 |
Datum des Eintrags: | 29-Apr-2024 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary Materials |
In Beziehung stehendes Objekt: | https://www.mdpi.com/article/10.3390/brainsci14040301/s1 |
Fakultät: | M - Medizinische Fakultät |
Fachrichtung: | M - Pathologie |
Professur: | M - Prof. Dr. Rainer M. Bohle |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
brainsci-14-00301.pdf | 4,33 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons