Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-41952
Titel: Machine Learning-Assisted Classification of Paraffin-Embedded Brain Tumors with Raman Spectroscopy
VerfasserIn: Klamminger, Gilbert Georg
Mombaerts, Laurent
Kemp, Françoise
Jelke, Finn
Klein, Karoline
Slimani, Rédouane
Mirizzi, Giulia
Husch, Andreas
Hertel, Frank
Mittelbronn, Michel
Kleine Borgmann, Felix B.
Sprache: Englisch
Titel: Brain Sciences
Bandnummer: 14
Heft: 4
Verlag/Plattform: MDPI
Erscheinungsjahr: 2024
Freie Schlagwörter: Raman spectroscopy
vibrational spectroscopy
gliomas
meningiomas
brain metastasis
tumor necrosis
artificial intelligence
machine learning
random forest classification
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Raman spectroscopy (RS) has demonstrated its utility in neurooncological diagnostics, spanning from intraoperative tumor detection to the analysis of tissue samples peri- and postoperatively. In this study, we employed Raman spectroscopy (RS) to monitor alterations in the molecular vibrational characteristics of a broad range of formalin-fixed, paraffin-embedded (FFPE) intracranial neoplasms (including primary brain tumors and meningiomas, as well as brain metastases) and considered specific challenges when employing RS on FFPE tissue during the routine neuropathological workflow. We spectroscopically measured 82 intracranial neoplasms on CaF2 slides (in total, 679 individual measurements) and set up a machine learning framework to classify spectral characteristics by splitting our data into training cohorts and external validation cohorts. The effectiveness of our machine learning algorithms was assessed by using common performance metrics such as AUROC and AUPR values. With our trained random forest algorithms, we distinguished among various types of gliomas and identified the primary origin in cases of brain metastases. Moreover, we spectroscopically diagnosed tumor types by using biopsy fragments of pure necrotic tissue, a task unattainable through conventional light microscopy. In order to address misclassifications and enhance the assessment of our models, we sought out significant Raman bands suitable for tumor identification. Through the validation phase, we affirmed a considerable complexity within the spectroscopic data, potentially arising not only from the biological tissue subjected to a rigorous chemical procedure but also from residual components of the fixation and paraffin-embedding process. The present study demonstrates not only the potential applications but also the constraints of RS as a diagnostic tool in neuropathology, considering the challenges associated with conducting vibrational spectroscopic analysis on formalin-fixed, paraffin-embedded (FFPE) tissue.
DOI der Erstveröffentlichung: 10.3390/brainsci14040301
URL der Erstveröffentlichung: https://doi.org/10.3390/brainsci14040301
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-419527
hdl:20.500.11880/37542
http://dx.doi.org/10.22028/D291-41952
ISSN: 2076-3425
Datum des Eintrags: 29-Apr-2024
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/brainsci14040301/s1
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Pathologie
Professur: M - Prof. Dr. Rainer M. Bohle
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
brainsci-14-00301.pdf4,33 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons