Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-41544
Volltext verfügbar? / Dokumentlieferung
Titel: Application of supportive and substitutive technologies in manual warehouse order picking: a content analysis
VerfasserIn: Grosse, Eric H.
Sprache: Englisch
Titel: International Journal of Production Research
Bandnummer: 62 (2024)
Heft: 3
Seiten: 685-704
Verlag/Plattform: Taylor & Francis
Erscheinungsjahr: 2023
Freie Schlagwörter: Order picking
warehousing
technologies
assistive devices
human–technology interaction
human-centricity
DDC-Sachgruppe: 330 Wirtschaft
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Order picking in warehouses is a labour- and time-intensive logistical process that significantly impacts the efficiency of supply chains. Although technical progress facilitates the automation of specific order picking tasks, human workers remain the primary actors of order picking. Owing to high operating costs associated with manual order picking, its design and management have been increasingly researched for decades. Because manual order picking systems are socio-technical systems, human factors and workers’ interaction with technology are essential for operational success. As innovative technologies become increasingly utilised, such as augmented reality or exoskeletons, warehouse managers need to consider the effects of supportive and substitutive technologies on operational outcomes. However, the potentials and obstacles of using technologies in manual order picking require further investigations. Therefore, this study analyses literature content on supportive and substitutive technologies in manual warehouse order picking and investigates the existing state of research in this field. Text mining is employed to enhance the insights regarding the content analysis. Additionally, future research opportunities on the integration of supportive and substitutive technologies are proposed for manual order picking improvement and development of sustainable and human-centered logistics systems, according to the Industry 5.0 vision.
DOI der Erstveröffentlichung: 10.1080/00207543.2023.2169383
URL der Erstveröffentlichung: https://doi.org/10.1080/00207543.2023.2169383
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-415440
hdl:20.500.11880/37226
http://dx.doi.org/10.22028/D291-41544
ISSN: 1366-588X
0020-7543
Datum des Eintrags: 2-Feb-2024
Fakultät: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Fachrichtung: HW - Wirtschaftswissenschaft
Professur: HW - Prof. Dr. Eric Grosse
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.