Please use this identifier to cite or link to this item: doi:10.22028/D291-41518
Title: ZEBRA: a hierarchically integrated gene expression atlas of the murine and human brain at single-cell resolution
Author(s): Flotho, Matthias
Amand, Jérémy
Hirsch, Pascal
Grandke, Friederike
Wyss-Coray, Tony
Keller, Andreas
Kern, Fabian
Language: English
Title: Nucleic Acids Research
Volume: 52 (2024)
Issue: D1
Pages: D1089-D1096
Publisher/Platform: Oxford University Press
Year of Publication: 2023
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: The molecular causes and mechanisms of neurodegenerative diseases remain poorly understood. A growing number of single-cell studies have implicated various neural, glial, and immune cell subtypes to affect the mammalian central nervous system in many age-related disorders. Integrating this body of transcriptomic evidence into a comprehensive and reproducible framework poses several computational challenges. Here, we introduce ZEBRA, a large single-cell and single-nucleus RNA-seq database. ZEBRA integrates and normalizes gene expression and metadata from 33 studies, encompassing 4.2 million human and mouse brain cells sampled from 39 brain regions. It incorporates samples from patients with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, and Multiple sclerosis, as well as samples from relevant mouse models. We employed scVI, a deep probabilistic auto-encoder model, to integrate the samples and curated both cell and sample metadata for downstream analysis. ZEBRA allows for cell-type and disease-specific markers to be explored and compared between sample conditions and brain regions, a cell composition analysis, and gene-wise feature mappings. Our comprehensive molecular database facilitates the generation of data-driven hypotheses, enhancing our understanding of mammalian brain function during aging and disease. The data sets, along with an interactive database are freely available at https://www.ccb.uni-saarland.de/zebra.
DOI of the first publication: 10.1093/nar/gkad990
URL of the first publication: https://doi.org/10.1093/nar/gkad990
Link to this record: urn:nbn:de:bsz:291--ds-415184
hdl:20.500.11880/37183
http://dx.doi.org/10.22028/D291-41518
ISSN: 1362-4962
0305-1048
Date of registration: 29-Jan-2024
Description of the related object: Supplementary data
Related object: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/nar/52/D1/10.1093_nar_gkad990/1/gkad990_supplemental_files.zip?Expires=1709536003&Signature=gw1ise1q8ofVwMM1qO1RA0KfFwFkWYb5WzUtUx0HoxjuENmSiAUIVqvpaW96K9k~lO1rSzlAqBJ3LPS6lifuV6qtrzoHLlRRjURjrhWwcGRVoFWyiG4v-ieGr5bPKXqKEH-lQzIrV64kDecz-P9a1HC~e1a-NlWn7~3D076Vi4hIb9wM~Sviqzr63CzaDJgzyKLLctwr9GegSV~7b2M0NH0D10NkwUREzdLzuHQKJP9jm5h8uZDbBAuuATGB5gqsEM1JMsgRdHvZYDWV-y97RxIVdotI9G4u~mLuSB3DCCrz7Dm1rTE72DhSSBDFU1TuEiwphUPeIR3aZSxMR6Yu0Q__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
Faculty: M - Medizinische Fakultät
Department: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professorship: M - Univ.-Prof. Dr. Andreas Keller
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
gkad990.pdf937,33 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons