Please use this identifier to cite or link to this item: doi:10.22028/D291-41173
Title: Totally null sets and capacity in Dirichlet type spaces
Author(s): Chalmoukis, Nikolaos
Hartz, Michael
Language: English
Title: Journal of the London Mathematical Society
Volume: 106
Issue: 3
Pages: 2030-2049
Publisher/Platform: Wiley
Year of Publication: 2022
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: In the context of Dirichlet type spaces on the unit ball of â„‚đť‘‘, also known as Hardy–Sobolev or Besov–Sobolev spaces, we compare two notions of smallness for compact subsets of the unit sphere. We show that the functional analytic notion of being totally null agrees with the potential theoretic notion of having capacity zero. In particular, this applies to the classical Dirichlet space on the unit disc and logarithmic capacity. In combination with a peak interpolation result of Davidson and the second named author, we obtain strengthening of boundary interpolation theorems of Peller and KhrushchĂ«v and of Cohn and Verbitsky.
DOI of the first publication: 10.1112/jlms.12617
URL of the first publication: https://doi.org/10.1112/jlms.12617
Link to this record: urn:nbn:de:bsz:291--ds-411739
hdl:20.500.11880/36943
http://dx.doi.org/10.22028/D291-41173
ISSN: 1469-7750
0024-6107
Date of registration: 24-Nov-2023
Faculty: MI - Fakultät fĂĽr Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Junior Professor Michael Hartz
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



This item is licensed under a Creative Commons License Creative Commons