Please use this identifier to cite or link to this item:
doi:10.22028/D291-41173
Title: | Totally null sets and capacity in Dirichlet type spaces |
Author(s): | Chalmoukis, Nikolaos Hartz, Michael |
Language: | English |
Title: | Journal of the London Mathematical Society |
Volume: | 106 |
Issue: | 3 |
Pages: | 2030-2049 |
Publisher/Platform: | Wiley |
Year of Publication: | 2022 |
DDC notations: | 510 Mathematics |
Publikation type: | Journal Article |
Abstract: | In the context of Dirichlet type spaces on the unit ball of ℂ𝑑, also known as Hardy–Sobolev or Besov–Sobolev spaces, we compare two notions of smallness for compact subsets of the unit sphere. We show that the functional analytic notion of being totally null agrees with the potential theoretic notion of having capacity zero. In particular, this applies to the classical Dirichlet space on the unit disc and logarithmic capacity. In combination with a peak interpolation result of Davidson and the second named author, we obtain strengthening of boundary interpolation theorems of Peller and Khrushchëv and of Cohn and Verbitsky. |
DOI of the first publication: | 10.1112/jlms.12617 |
URL of the first publication: | https://doi.org/10.1112/jlms.12617 |
Link to this record: | urn:nbn:de:bsz:291--ds-411739 hdl:20.500.11880/36943 http://dx.doi.org/10.22028/D291-41173 |
ISSN: | 1469-7750 0024-6107 |
Date of registration: | 24-Nov-2023 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Mathematik |
Professorship: | MI - Junior Professor Michael Hartz |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
Journal of London Math Soc - 2022 - Chalmoukis - Totally null sets and capacity in Dirichlet type spaces.pdf | 203,92 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License