Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-40840
Titel: | Beyond Flatland : exploring graphs in many dimensions |
VerfasserIn: | Coupette, Corinna Renate |
Sprache: | Englisch |
Erscheinungsjahr: | 2023 |
Freie Schlagwörter: | graph mining graph learning network analysis |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | Societies, technologies, economies, ecosystems, organisms, . . . Our world is composed of complex networks—systems with many elements that interact in nontrivial ways. Graphs are natural models of these systems, and scientists have made tremendous progress in developing tools for their analysis. However, research has long focused on relatively simple graph representations and problem specifications, often discarding valuable real-world information in the process. In recent years, the limitations of this approach have become increasingly apparent, but we are just starting to comprehend how more intricate data representations and problem formulations might benefit our understanding of relational phenomena. Against this background, our thesis sets out to explore graphs in five dimensions: descriptivity, multiplicity, complexity, expressivity, and responsibility. Leveraging tools from graph theory, information theory, probability theory, geometry, and topology, we develop methods to (1) descriptively compare individual graphs, (2) characterize similarities and differences between groups of multiple graphs, (3) critically assess the complexity of relational data representations and their associated scientific culture, (4) extract expressive features from and for hypergraphs, and (5) responsibly mitigate the risks induced by graph-structured content recommendations. Thus, our thesis is naturally situated at the intersection of graph mining, graph learning, and network analysis. Gesellschaften, Technologien, Volkswirtschaften, Ökosysteme, Organismen, . . . Unsere Welt besteht aus komplexen Netzwerken—Systemen mit vielen Elementen, die auf nichttriviale Weise interagieren. Graphen sind natürliche Modelle dieser Systeme, und die Wissenschaft hat bei der Entwicklung von Methoden zu ihrer Analyse große Fortschritte gemacht. Allerdings hat sich die Forschung lange auf relativ einfache Graphrepräsentationen und Problemspezifikationen beschränkt, oft unter Vernachlässigung wertvoller Informationen aus der realen Welt. In den vergangenen Jahren sind die Grenzen dieser Herangehensweise zunehmend deutlich geworden, aber wir beginnen gerade erst zu erfassen, wie unser Verständnis relationaler Phänomene von intrikateren Datenrepräsentationen und Problemstellungen profitieren kann. Vor diesem Hintergrund erkundet unsere Dissertation Graphen in fünf Dimensionen: Deskriptivität, Multiplizität, Komplexität, Expressivität, und Verantwortung. Mithilfe von Graphentheorie, Informationstheorie, Wahrscheinlichkeitstheorie, Geometrie und Topologie entwickeln wir Methoden, welche (1) einzelne Graphen deskriptiv vergleichen, (2) Gemeinsamkeiten und Unterschiede zwischen Gruppen multipler Graphen charakterisieren, (3) die Komplexität relationaler Datenrepräsentationen und der mit ihnen verbundenen Wissenschaftskultur kritisch beleuchten, (4) expressive Merkmale von und für Hypergraphen extrahieren, und (5) verantwortungsvoll den Risiken begegnen, welche die Graphstruktur von Inhaltsempfehlungen mit sich bringt. Damit liegt unsere Dissertation naturgemäß an der Schnittstelle zwischen Graph Mining, Graph Learning und Netzwerkanalyse. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-408409 hdl:20.500.11880/36729 http://dx.doi.org/10.22028/D291-40840 |
Erstgutachter: | Lenzen, Christoph |
Tag der mündlichen Prüfung: | 23-Okt-2023 |
Datum des Eintrags: | 31-Okt-2023 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
2023_Coupette_Beyond-Flatland.pdf | Dissertation | 19,94 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons