Please use this identifier to cite or link to this item: doi:10.22028/D291-40531
Title: Algorithms for sparse convolution and sublinear edit distance
Author(s): Fischer, Nick
Language: English
Year of Publication: 2023
DDC notations: 004 Computer science, internet
510 Mathematics
Publikation type: Dissertation
Abstract: In this PhD thesis on fine-grained algorithm design and complexity, we investigate output-sensitive and sublinear-time algorithms for two important problems. (1) Sparse Convolution: Computing the convolution of two vectors is a basic algorithmic primitive with applications across all of Computer Science and Engineering. In the sparse convolution problem we assume that the input and output vectors have at most t nonzero entries, and the goal is to design algorithms with running times dependent on t. For the special case where all entries are nonnegative, which is particularly important for algorithm design, it is known since twenty years that sparse convolutions can be computed in near-linear randomized time O(t log^2 n). In this thesis we develop a randomized algorithm with running time O(t \log t) which is optimal (under some mild assumptions), and the first near-linear deterministic algorithm for sparse nonnegative convolution. We also present an application of these results, leading to seemingly unrelated fine-grained lower bounds against distance oracles in graphs. (2) Sublinear Edit Distance: The edit distance of two strings is a well-studied similarity measure with numerous applications in computational biology. While computing the edit distance exactly provably requires quadratic time, a long line of research has lead to a constant-factor approximation algorithm in almost-linear time. Perhaps surprisingly, it is also possible to approximate the edit distance k within a large factor O(k) in sublinear time O~(n/k + poly(k)). We drastically improve the approximation factor of the known sublinear algorithms from O(k) to k^{o(1)} while preserving the O(n/k + poly(k)) running time.
In dieser Doktorarbeit über feinkörnige Algorithmen und Komplexität untersuchen wir ausgabesensitive Algorithmen und Algorithmen mit sublinearer Lauf-zeit für zwei wichtige Probleme. (1) Dünne Faltungen: Die Berechnung der Faltung zweier Vektoren ist ein grundlegendes algorithmisches Primitiv, das in allen Bereichen der Informatik und des Ingenieurwesens Anwendung findet. Für das dünne Faltungsproblem nehmen wir an, dass die Eingabe- und Ausgabevektoren höchstens t Einträge ungleich Null haben, und das Ziel ist, Algorithmen mit Laufzeiten in Abhängigkeit von t zu entwickeln. Für den speziellen Fall, dass alle Einträge nicht-negativ sind, was insbesondere für den Entwurf von Algorithmen relevant ist, ist seit zwanzig Jahren bekannt, dass dünn besetzte Faltungen in nahezu linearer randomisierter Zeit O(t \log^2 n) berechnet werden können. In dieser Arbeit entwickeln wir einen randomisierten Algorithmus mit Laufzeit O(t \log t), der (unter milden Annahmen) optimal ist, und den ersten nahezu linearen deterministischen Algorithmus für dünne nichtnegative Faltungen. Wir stellen auch eine Anwendung dieser Ergebnisse vor, die zu scheinbar unverwandten feinkörnigen unteren Schranken gegen Distanzorakel in Graphen führt. (2) Sublineare Editierdistanz: Die Editierdistanz zweier Zeichenketten ist ein gut untersuchtes Ähnlichkeitsmaß mit zahlreichen Anwendungen in der Computerbiologie. Während die exakte Berechnung der Editierdistanz nachweislich quadratische Zeit erfordert, hat eine lange Reihe von Forschungsarbeiten zu einem Approximationsalgorithmus mit konstantem Faktor in fast-linearer Zeit geführt. Überraschenderweise ist es auch möglich, die Editierdistanz k innerhalb eines großen Faktors O(k) in sublinearer Zeit O~(n/k + poly(k)) zu approximieren. Wir verbessern drastisch den Approximationsfaktor der bekannten sublinearen Algorithmen von O(k) auf k^{o(1)} unter Beibehaltung der O(n/k + poly(k))-Laufzeit.
Link to this record: urn:nbn:de:bsz:291--ds-405314
hdl:20.500.11880/36623
http://dx.doi.org/10.22028/D291-40531
Advisor: Bringmann, Karl
Date of oral examination: 29-Aug-2023
Date of registration: 18-Oct-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Dr.-Ing. Karl Bringmann
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis_final.pdf1,26 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons