Please use this identifier to cite or link to this item: doi:10.22028/D291-40586
Volltext verfügbar? / Dokumentlieferung
Title: Hamiltonian neural networks with automatic symmetry detection
Author(s): Dierkes, Eva
Offen, Christian
Ober-Blöbaum, Sina
Flaßkamp, Kathrin
Language: English
Title: Chaos
Volume: 33
Issue: 6
Publisher/Platform: AIP Publishing
Year of Publication: 2023
Free key words: Hamiltonian mechanics
Artificial neural networks
Machine learning
Differentiable manifold
Lie algebras
Vector fields
Functions and mappings
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Recently, Hamiltonian neural networks (HNNs) have been introduced to incorporate prior physical knowledge when learning the dynamical equations of Hamiltonian systems. Hereby, the symplectic system structure is preserved despite the data-driven modeling approach. However, preserving symmetries requires additional attention. In this research, we enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network. This approach allows us to simultaneously learn the symmetry group action and the total energy of the system. As illustrating examples, a pendulum on a cart and a two-body problem from astrodynamics are considered.
DOI of the first publication: 10.1063/5.0142969
URL of the first publication: https://doi.org/10.1063/5.0142969
Link to this record: urn:nbn:de:bsz:291--ds-405867
hdl:20.500.11880/36463
http://dx.doi.org/10.22028/D291-40586
ISSN: 1089-7682
1054-1500
Date of registration: 25-Sep-2023
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Univ.-Prof. Dr. Kathrin Flaßkamp
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.