Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-40583
Volltext verfügbar? / Dokumentlieferung
Titel: Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning
VerfasserIn: Stanciu, Stefan G.
König, Karsten
Song, Young Min
Wolf, Lior
Charitidis, Costas A.
Bianchini, Paolo
Goetz, Martin
Sprache: Englisch
Titel: Biophysics Reviews
Bandnummer: 4
Heft: 2
Verlag/Plattform: AIP Publishing
Erscheinungsjahr: 2023
Freie Schlagwörter: Engineering science
Machine learning
Biomimetics
Endoscopy
Diseases and conditions
Gastrointestinal imaging
Medical diagnosis
Multiphoton microscopy
Optical microscopy
Tissue characterization
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
DOI der Erstveröffentlichung: 10.1063/5.0133027
URL der Erstveröffentlichung: https://doi.org/10.1063/5.0133027
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-405836
hdl:20.500.11880/36461
http://dx.doi.org/10.22028/D291-40583
ISSN: 2688-4089
Datum des Eintrags: 25-Sep-2023
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Systems Engineering
Professur: NT - Prof. Dr. Karsten König
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.