Please use this identifier to cite or link to this item: doi:10.22028/D291-40490
Volltext verfügbar? / Dokumentlieferung
Title: Variance-aware multiple importance sampling
Author(s): Grittmann, Pascal
Georgiev, Iliyan
Slusallek, Philipp
Křivánek, Jaroslav
Language: English
Title: ACM transactions on graphics : TOG
Volume: 38
Issue: 6
Publisher/Platform: ACM
Year of Publication: 2019
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.
DOI of the first publication: 10.1145/3355089.3356515
URL of the first publication: https://dl.acm.org/doi/10.1145/3355089.3356515
Link to this record: urn:nbn:de:bsz:291--ds-404903
hdl:20.500.11880/36393
http://dx.doi.org/10.22028/D291-40490
ISSN: 1557-7368
0730-0301
Date of registration: 6-Sep-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Philipp Slusallek
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.