Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-40379
Titel: | AKILES : An Approach to Automatic Knowledge Integration in Learning Expert Systems |
VerfasserIn: | Ossa, Alvaro de la |
Sprache: | Englisch |
Erscheinungsjahr: | 1991 |
Erscheinungsort: | Kaiserslautern |
Freie Schlagwörter: | Learning and Knowledge Acquisition Knowledge Representation |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Forschungsbericht (Report zu Forschungsprojekten) |
Abstract: | Knowledge integration is defined here as a machine learning task from a practical point of view—by identifying the requirements that a real-world complex application domain poses on the expert system in relation to a changing world. We present our current approach to knowledge integration in an expert system, required when the structure of the physical system, the world on which the expert system operates changes. Our exemplar domain task is technical diagnosis. We test our approach on the particular architecture of MOLTKE/3, our workbench for technical diagnosis1- which integrates second-generation expert system techniques in a unique framework. Knowledge integration is seen as the task of elaborating and accomodating new information (due to structural changes) in the expert system's knowledge, maintaining consistency in the knowledge base. The main focus is towards improving the adaptability of the expert system to the structural changes. The approach is based on three principles from the adaptation process: incrementality, extensive and intensive use of domain knowledge, and focus on strategic knowledge. We discuss how AKILES’ knowledge integration task can be used to complete the modeling cycle, i.e., covering the model-evaluation step in the layout-elaboration-evaluation cycle, as defined in [13]. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-403795 hdl:20.500.11880/36390 http://dx.doi.org/10.22028/D291-40379 |
Schriftenreihe: | SEKI-Report / Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI [ISSN 1437-4447] |
Band: | 91,8 |
Datum des Eintrags: | 5-Sep-2023 |
Fakultät: | SE - Sonstige Einrichtungen |
Fachrichtung: | SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz |
Professur: | SE - Sonstige |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
SEKI-Report-SR-91-08_Ossa_AKILES-An-Approach-to-Automatic-Knowledge-Integration-in-Learning-Expert-Systems.pdf | 1,44 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.