Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-40379
Titel: AKILES : An Approach to Automatic Knowledge Integration in Learning Expert Systems
VerfasserIn: Ossa, Alvaro de la
Sprache: Englisch
Erscheinungsjahr: 1991
Erscheinungsort: Kaiserslautern
Freie Schlagwörter: Learning and Knowledge Acquisition
Knowledge Representation
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Forschungsbericht (Report zu Forschungsprojekten)
Abstract: Knowledge integration is defined here as a machine learning task from a practical point of view—by identifying the requirements that a real-world complex application domain poses on the expert system in relation to a changing world. We present our current approach to knowledge integration in an expert system, required when the structure of the physical system, the world on which the expert system operates changes. Our exemplar domain task is technical diagnosis. We test our approach on the particular architecture of MOLTKE/3, our workbench for technical diagnosis1- which integrates second-generation expert system techniques in a unique framework. Knowledge integration is seen as the task of elaborating and accomodating new information (due to structural changes) in the expert system's knowledge, maintaining consistency in the knowledge base. The main focus is towards improving the adaptability of the expert system to the structural changes. The approach is based on three principles from the adaptation process: incrementality, extensive and intensive use of domain knowledge, and focus on strategic knowledge. We discuss how AKILES’ knowledge integration task can be used to complete the modeling cycle, i.e., covering the model-evaluation step in the layout-elaboration-evaluation cycle, as defined in [13].
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-403795
hdl:20.500.11880/36390
http://dx.doi.org/10.22028/D291-40379
Schriftenreihe: SEKI-Report / Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI [ISSN 1437-4447]
Band: 91,8
Datum des Eintrags: 5-Sep-2023
Fakultät: SE - Sonstige Einrichtungen
Fachrichtung: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Professur: SE - Sonstige
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.