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ABsTRACT 

Knowledge tntegratiDn is defined here as a machine learning task from a practical point of view-by 
Ident1fy1ng the requirements that a real-world complex application domain poses on the expert 

system in relation to a changing world. We present our current approach to knowledge integration 
10 an expert system. required when the structure of the physical system. the world on which the 
expert system operates changes. Our exemplar domain task is technical dtngnosts. We test our 

approach on the particular architeCture of MOL11CE/3. our workbench for technical dlagnoslsl. 
which Integrates second-generation expert system techniques in a unique framework. 

Knowledge integration is seen as the task of elaborattng and cwcomod.ating new infonnation (due to 

structural changes) in the expert system's knowledge. maintaining consistency in the knowledge 

base. The main focus is towards improving the adaptabdtty of the expert system to the structural 

changes. The approach is based on three principles from the adaptation process: Increm~ntaUty. 

extensive and intensive use of domain knowledge, and focus on strategic knowledge. We discuss 
how MILES' knowledge Integration task can be used to complete the modellng cycle. I.e.• covering 
the model-evaluation step In the layout-elaboration-evaluation cycle. as defined in [13). 

Topics:	 Learning and Knowledge Acquisition 
Knowledge Representation 

The present work Is a partial description of the dissertation research being done by the author 
under tht gUidance of Prof. Dr. M. M. Richter at Ka1serslautern. The author is a fellow student of 
the German Service for Academical Exchange (DAAD) and of the University of Costa Rica. 
MOLTKE/3. for "MOdels. Learning and Temporal Knowledge In Expert systems for technIcal 
diagnosis". was developed at our research group In Kaiserslautern 
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ABSTRACT

Knowledge integration is defined here as a machine learning task from a practical point of view—by
identifying the requirements that a real-world complex application domain poses on the expert
system in relation to a changing world. We present our current approach to knowledge integration
in an expert system. required when the structure of the physical system. the world on which the
expert system operates changes. Our exemplar domain task is technical diagnosis. We test our
approach on the particular architecture of Mounts/3. our workbench for technical diagnosisl-
which integrates second-generation expert system techniques in a unique framework.

Knowledge integration is seen as the task of elaborating and aooomodating new information (due to
structural changes) in the expert system's knowledge. maintaining consistency in the knowledge
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changes. The approach is based on three principles from the adaptation process: incrementality.
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the model-evaluation step in the layoubelaboration-evaluation cycle. as defined in [13].
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1.	 INTRODUCTION 

In thiS paper we describe our current approach to knowledge integration for expert system 
adaptation in the dOlDain of technical diagnosis. The description Is given in tenns of a 
real-world problem: the change of structure in a machine. We consider knowledge 
integration necessary for expert system adaptability. 

Before the structure of the machine is chaIlged. diagnostic experience has been acquired 
and the knowledge has been refined. Practical restrictions imposed by the real-world 
application may make it impracticable or at least very expensive to generate a totally 
new knowledge base for the new machine evety time a part is replaced with a different 
one. Besides. that would cause the loss of valuable refinements in knowledge. unless we 
are able to identify and extract those refinements before generating the new knowledge 
base and then apply them conSistently.; Our approach is lc;lentifying refinement 
knowledge and then adapting it to the new machine's structure. 

Integrating new knowledge includes revision and evaluation of the expert system's beliefs 
with relation to the- modified world. Basic assumptions m&y have to. be changed and. 
moreover. the representational framework may need of adaptation too. We attempt to 
close the modeling cycle defined in (13) by providing the means for evaluation of the 
domain theoty. 

Section 2 of the article otTers a short description of the MOLTKE/3 workbench, the 
computational testbed for AKILES. Section 3 discusses the requirements posed on the 
knowledge integration system. Several approaches to knowledge extension. refinement. 
and integration illustrate the discussion. and some features of our knowledge integration 
approach are highlighted. Section 4 first presents a functional view of knowledge 
integration. Then. deepening on previous discussion. it describes how our model satisfies 
the requirements presented before. Finally. section 5 discusses the innovations of 
AKILES. its state of realization. and the future research trends. 

2.	 THE COMPUTATIONAL TEsTBED FOR ,AKU,ES: 
THE WORKBENCH'MOLTKE/3 

This section describes the MOLTKE/3 workbench (2]. Due to space limitations. only a brief 
description of the tools and subsystems conforming the workbench is given. Details 
about its conceptual approach and methodological development can be found in the 
references mentioned through the description. 

AKILES is designed as a framework for knowledge integration in expert systems on the 
architecture of the MOLTKE/3 workbench for technical diagnosis. Several other tools 
have been developed by the Artificial Intelligence Research Group on Expert Systems at 
Kafserslautern. which are alrea.dy integrated within MOLTKE. The shell has been tested 
with several application domains. such as CNC machine centers2 • CNC 3D-measurement 
devices and heterogeneous computer networks. The results have been encouraging and 
have fed back with fruitful experience to Ievise and enhance MOLTKE's design. 

CNC - [or Computerized Numerical Control 2 

1 .  INTRODUCTION

In this paper we describe our current approach to knowledge integration for expert system
adaptation in the domain of technical diagnosis. The description is given in terms of a
real-world problem: the change of structure in a machine. We consider knowledge
integration necessary for expert system adaptability.

Before the structure of the machine is changed. diagnostic experience has been acquired
and the knowledge has been refined. Practical restrictions imposed by the real-world
application may make it impracticable or at least very expensive to generate a totally
new knowledge base for the new machine every time a part is replaced with a different
one. Besides. that would cause the loss of valuable refinements in knowledge. unless we
are able to identify and extract those refinements before generating the new knowledge
base and then apply them consistently: Our approach is  identifying refinement
knowledge and then adapting it to the new machine's structure. '
Integrating new knowledge includes revision and evaluation of the expert system's beliefs
with relation to the-modified world. Basic assumptions may have to.be changed and.
moreover, the representational framework may need of adaptation too. We attempt to
close the modeling cycle defined in [13] by providing the means for evaluation of the
domain theory. _

Section 2 of the article offers a short description of the MOLTKE/ 3 workbench, the
computational testbed for AKILES. Section 3 discusses the requirements posed on the
knowledge integration system. Several approaches to knowledge extension, refinement.
and integration illustrate the discussion. and some features of  our knowledge integration
approach are highlighted. Section 4 first presents a functional view of knowledge
integration. Then. deepening on previous discussion. it describes how our model satisfies
the requirements presented before. Finally, section 5 discusses the innovations of
AKILES. its state of realization. and the future research trends.

2.  THE COMPUTATIONAL TESTBED FOR AKILES:
THE WORKBEN CH' MOLTKE / 3

This section describes the MOL'l‘KE/ 3 workbench [2]. Due to space limitations. only a brief
description of the-tools and subsystems conforming the workbench is given. Details
about its conceptual approach and methodological development can be  found in  the
references mentioned through the description.

AKILES is designed as a framework for knowledge integration in expert systems on  the
architecture of the MOLTKE/3 workbench for technical diagnosis.  Several other tools
have been developed by the Artificial Intelligence Research Group on  Expert Systems at
Kaiserslautern. which are already integrated within MOLTKE. The shel l  has been tested
with several application domains, such as CNC machine centersz. CNC 3D-measurement
devices and heterogeneous computer networks. The results have been encouraging and
have fed back with fruitful experience to revise and enhance MOLTKE‘s design.

2 CNC - for Computerized Numerical Control



3 

In MOLTKE. diagnostic knowledge is structured verttcally-an heterarchy of contexts. 
each corresponding to particular diagnostic situations (knowledge about fallures: 
classiflcation), and hortzOntally-knowledge about the diagnostic process (test selection) 
is separated in ordering. shortcut. and diagnostic knowledge, as described later, The 
knowledge base also contains a causal model of the technical system and a case base of 
diagnostic cases. The knowledge ts processed with several interpreters. allowing for 
combination of multiple strategies. 

2.1. Basic Terminology. The DIagnostic Process In MOLTKE 

A symptom class relates a name with a list of possible values (e.g.• the name Valve 

associated to the set of values (open, clo••d) ). A symptom instance describes a 
machine part's state (e.g.• (ValveXl clo••d». The current value may be unknown or one 
of the possible values for the class. A situation is the set of all symptom instances (e.g.. 
I (ValveXl clo••d) (ValveY2 op.n) (Preuur.PO hiqh»): U(partially) describes the 
actual state of the technical system. Aformula stores the current binding of a symptom 
instance, which is a variable in the predicate calculus. A three-valued logic (true, 

tal••, unltnown) is used to evaluate the formulas in a fonnula language. 

Tests determine the current value of one or more symptom instances. Ordering rules are 
used to determine which test to execute next; they have a formula on the left side (test's 
precondition) and a symptom instance (to- be tested) on the right side (e.g.• (118 ValveXl 

010.8<1) -> DuctD4 t ••t) J. The order of thts rules determines the (potential) execution 
order of tests. Shortcut rules represent a relation between symptom values. and shorten 
the diagnostic process by deriving one or more (unknown) symptom values from one or 
more (known) symptom values. thus eliminating the need to gather their values through 
tests. 

A context: describes a rough. intermediate, or final diagnosis: it has a precondition 
(conjunction -or disjunction of conjunctions- of symptom values) which. if satisfied 
under the current situation, causes the associated diagnosis to become proven. in which 
case the corresponding correction is executed. To every context a set of ordering rules and 
a set of shortcut rules are associated. as well as a context interpreter. The localIty of 
ordering rules and the presence of a (local) interpreter allow for especiallzed strategy for 
test selection. A default context interpreter uses the ordering rules for that matter. 

The space of diagnostic situations represents the search space for diagnosis. It is 
structured In the context graph. whose nodes represent diagnoses, and the arcs 
refinement links between contexts. A global interpreter processes the knowledge in a 
cycle of gathering symptom values and refining to other context when its precondition is 
satisfied, until a leafnode in the graph is reached. 

As a result of the separation of factual diagnostic knowledge (context precondition) and 
strategy knowledge (ordering rules). besides the use of the domain expert's terminology, 
the knowledge acquisiton becomes Simplified. Two powerful graphical user-interfaces 
(based on the Browser interface of Smalltalk-80. the ImplementatJon language of 
MOL11<E1 are used for editing the structural and behavtoral model of the machine. as well 
as the context graph. 

In MOLTKE. diagnostic knowledge is structured vertically—an heterarehy of contexts,
each corresponding to particular diagnostic situations (knowledge about failures:
classification). and horizontally—knowledge about the diagnostic process (test selection) -
is separated in ordering. shortcut. and diagnostic knowledge, as described later. The
knowledge base also contains a causal model of the technical system and a case base'of
diagnostic cases. The knowledge is processed with several interpreters. allowing for
combination of multiple strategies.

2.1. Basic Terminology. The Diagnostic Process in Moran
A symptom class relates a name with a list of possible values (e.g.. the name vun
associated to the set of  values (open, c loudn.  A symptom instance describes a
machine parts state (e.g.. (wann cloud”. The current value may be unknown or one
of the possible values for the class. A situation is the set of all symptom instances (e.g..
((Valvcxl c loud)  (ValvaYZ open) (punuropo  high)” ;  it (partially) describes the
actual state of the technical system. A formula stores the current binding of a symptom
instance. which is a variable in the predicate calculus. A‘ three-valued logic ( true ,
rain, unknown) is used to evaluate the formulas in a formula language.

Tests determine the current value of one or more symptom instances. Ordering rules are
used to determine which test to execute next: they have a formula on the left side (test's
precondition) and a symptom instance (to be tested) on the right side [e.g.. ((i. Valvelfl
cioua) -> nueem tes t” .  The order of this rules determines the (potential) execution
order of tests. Shortcut rules represent a relation between symptom values. and shorten
the diagnostic process by deriving one or more (unknown) symptom values from one or
more (known) symptom values. thus eliminating the need to gather their values through
tests.

A context : describes a rough. intermediate. or final diagnosis; it has a precondition
(conjunction -—or disjunction of conjunctions— of symptom values) which, if satisfied
under the current situation, causes the associated diagnosis to become proven. in which
case the corresponding correction is executed. To every context a set of ordering rules and
a set of  shortcut rules are associated. as well ‚as a context interpreter. The locality of
ordering rules and the presence of a (local) interpreter allow for especialized strategy for
test selection. A default context interpreter uses the ordering rules for that matter.

The space of diagnostic situations represents the search space for diagnosis. It is
structured in the context graph. whose nodes represent diagnoses. and the arcs
refinement links between contexts. A global interpreter processes the knowledge in a
cycle of  gathering symptom values and refining to other context when its precondition is
satisfied. until a leaf'node in the graph is reached.

As a result of the separation of factual diagnostic knowledge (context precondition) and
strategy knowledge (ordering rules), besides the use of the domain expert's terminology.
the knowledge acquisiton becomes simplified. Two powerful graphical user-interfaces
(based on the Browser interface of Smalltalk-80. the implementation language of
MOLTKE) are used for editing the structural and behavioral model of  the  machine. as well
as  the context graph.



4 

2.2. Model-Based Diagnosis in MOLTKE 

In MOLTKE, diagnostic knowledge extracted automatically and directly from the 
machine's design plans guides diagnosis. The automatic model and diagnostic knowledge 
compiler MAKE3 [15] builds up a static model of the machine, including a complete 
description of the machine's structure and behavior. The structure ts represented in a 
hierarchy of parts. For each prtmitive part, its behaviors are described as input-output 
rules relating its ports. Complex parts' behavior ts elaborated on the basis of their 
component parts. The model ts checked for conststency and the context heterarchy is 
build through a simulation process. For each context, its preconditlon and shortcut rules 
are generated. 

MAKE's output ts a basic expert system, which conforms the model-based component of 
the expert system. It might be later refined by the expert, for instance, by changing the 
order of orcler1ng rules 'or mOdl.rytng shortcut rules. ' 

2.3. LeamiDg in MOLTKE 

Experience gained by the expert system is acquired, organized, and refined by the 
l~arning component. Experientla1 knowledge ts modeled under a case-based approach. 
Two subsystems cooperate to enhance the diagnostic task. PAIDEX!2 [1,31, a case-based 
reasoning subsystem, acts interactively, on-line, to enhance the diagnostic process. It 
retrteves the most simUar diagnostic situation (case) to the current one, described by an 
ordered set of symptom values and a diagnostic hypothesis. Slmllarity is defined in 
terms of the symptom values present in the current case. The solution of the retrteved 
case is mapped to the current case. 

The other subsystem, GENRULE [4], acts off-line by compUtng heuristic generalization 
rules from the diagnostic cases. The heuristic rules, which describe partial shortcut rules, 
are given an statistically-determined certainty factor. During diagnosts, the user 
determines how many shortcut rules may fire, thus either avoiding uncertain 
conclusions (i.e., no shortcut rules may fire) or allowing for evaluatior. of the appllcation 
of generated rules. 

3. REQUIREMENTS ON KNOWLEDGE INTEGRATION 

Several approaches can be found in the bibllography for knowledge revision, extension, 
refinement. and integration. These terms are repeatedly used in different ways. although 
the most important goal of knowledge integration. and motivation of most approaches. is 
mainly one: giving the learning system a means of reacting to a changing environment 
(Le.. its worldJ. 

In our technical diagnosis scenario. new information means evidence of a structural 
change in the machine. The expert system should be able of integrating new information 
and adapting the affected knowledge to cope with the new reality. The follOWing 
discussion on the requirements imposed on the knowledge Integration system highlights 

----~_._------
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2.2. Model-Based Diagnosis in Mouse
In MOLTKE, diagnostic knowledge extracted automatically and directly from the
machine's design plans guides diagnosis. The automatic model and diagnostic knowledge
compiler MAKE-:3 [15]  builds up a static model of the machine. including a complete
description of the machine's structure and behavior. The‘ structure is represented in a
hierarchy of parts. For each primitive part. its behaviors are described as input-output
rules relating its ports. Complex parts' behavior is elaborated on the basis of their
component parts. The model is checked for consistency and the context heterarchy is
build through a simulation process. For each context. its precondition and shortcut rules
are generated.

MAKE's output is a basic expert system.t conforms the model-based component of
the expert system. It might be later refined by the expert. for instance. by changing the
order of. ordering rules or modifying shortcut rules.

2.3. Learning in Momma

Experience gained by the expert system is acquired. organized. and refined by the
learning component. Experiential knowledge is modeled under a case-based approach.
T'wo subsystems cooperate to enhance the diagnostic task. PATDEX/z [1.3]. a case-based
reasoning subsystem. acts interactively. on-line. to enhance the diagnostic process. It
retrieves the most similar diagnostic situation (case) to the current one. described by an
ordered set of symptom values and a diagnostic hypothesis. Similarity is defined in
terms of the symptom values present in the current case. The solution of the retrieved
case is mapped to the current case.

The other subsystem. GENRULE [4]. acts ati-line by compiling heuristic generalization
rules from the diagnostic cases. The heuristic rules. which describe partial shortcut rules.
are given an statistically-determined certainty factor. During diagnosis. the user
determines how many shortcut rules may fire. thus either avoiding uncertain
conclusions [i.e.. no shortcut rules may fire) or allowing for evaluation of the application
of generated rules.

3. REQUIREMENTS ON KNOWLEDGE INTEGRATION
Several approaches can be found in the bibliography for knowledge revision. extension,
refinement. and integration. These terms are repeatedly used in different ways, although
the most important goal of knowledge integration. and motivation of most approaches. is
mainly one: giving the learning system a means of reacting to a changing environment
(i.e., its world).

In our  technical diagnosis scenario. new information means evidence of  a structural
change in the machine. The expert system should be able of integrating new information
and adapting the affected knowledge to cope with the new reality. The following
discussion on  the requirements imposed on the knowledge integration system highlights

3 for Model-based Automatic Knowledge Extractor
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features for the SY$tem and leaves open some questions that we try to adequately answer 
in section 4. where we present the functional structure ofAKILES. 

3.1. Use of Domain Knowledge for Knowledge Integration 

Most approaches to knowledge integration emphasize the need for explOiting domain 
knowledge. Extensive and intensive use of domain knowledge are necessary for 
knowledge integration. Reasoning about change and its impact cannot be gUided using 
only a bunch of heUristic rules that attempt to descrtbe all possible change situations in 
the world. or a prefixed set of dependency associations between knowledge base objects or 
object types. Those kind of abstractions are necessary. but we rather think of a system 
capable of extracting and abstracting from the change situations relevant information 
that is useful for further identification and elaboration of change situations. Relations 
between objects. properties. etc. in the d.omain itself should detertnine dependencies to 
direct knowledge refinement. revision. or integration. rather than mere syntactic or 
pseudo-semantic aSSOCiations of objects or their properties. 

Integrating involves the process of elaborating new incoming Information. The 
integration process is defined in an incremental. cooperative manner as a process in 
which the expert directs elaboration. while the system elaborates and proposes 
(moreover. supervises) knowledge tntegratton tasks. 

3.1.1. EEtenstve Use ofDomaIn Knowledge 

With the term extensive we mean: (1) tenninological. extension -the extent to which the 
system defines its reasoning tasks in terms of domain knowledge objects rather than on 
syntactical properties; (2) feedbaJ:k extension -the extent to which the learning system's 
output is fed to and used by the domain theory. and the extent to which the expert's advice 
is used for further learning: and (3) revision extension -the extent to which identifying 
knowledge for revision is gUided by domain knowledge and spread in the theory. 

BLIP. developed under the Sloppy Modeling approach [13] is terminologically extensive. 
The reasoning task. modeling. Is defined in terms of objects in the theory (model), and the 
terminology (predicates defmed in the model) is refined by establishing the user the 
semantics of predicates through the inclusion of meta-facts. This becomes a refinement 
cycle in which the system reasons about the adequacy of the representation in terms of 
the predicates and their semantics. 

DISCIPLE [8.9.101. which uses EBL to explain a user's solution. is not feedback-extensive: 
feedback is only to the learning element -the explanation; the performance element 
gains only in the verification of classification. BLIP is feedback-extensive: it allows in 

one direction for model revision and in the other for theory extension; it uses the expert's 
judgement to extend or reorganize predicates and their semantics, which can be in turn 
revised again. 

\1urray's Kl [14) is revision-extensive: the search for consequences of new in~oming 

inforn1ation is gUided by inference rules local to a concept's role and by the derived 
dependencies between domain knowledge objects: thus. possible consequences are 
identified and presented to the domain expert with plausible resolution hypotheses. 

features for the system and leaves open some questions that we try to adequately answer
in section 4. where we present the functional structure of AKl.

3 .1 .  Use of Domain Knowledge for Knowledge Integration
Most approaches to knowledge integration emphasize the need for exploiting domain
knowledge. Extensive and intensive use of domain knowledge are necessary for
knowledge integration. Reasoning about change and its impact cannot be guided using
only a bunch of heuristic rules that attempt to describe all possible change situations in
the world. or a prefixed set of dependency associations between knowledge base objects or
object types. Those kind of abstractions are necessary. but we rather think of a system
capable of extracting and abstracting from the change situations relevant information
that is useful for further identification and elaboration of change situations. Relations
between objects. properties. etc.  in the domain itself should determine dependencies to
direct knowledge refinement, revision. or integration. rather than mere syntactic or
pseudo-semantic associations of objects or their properties. ‘

Integratlng involves the process of elaborating new incoming information. The
integration process is defined in an incremental. cooperative manner as a process in
which the expert directs elaboration. while the system elaborates and proposes
(moreover. supervises) knowledge integration tasks.

3.1.1. Extensive Use ofDomaln Knowledge

With the term extensive we mean: (I) tennmologioal extension —the extent to which the
system defines its reasoning tasks in terms of domain knowledge objects rather than on
syntactical properties: (2) feedback extension —the extent to which the learning system's
output is fed to and used by the domain theory. and the extent to which the expert's advice
is used for further learning; and (3) revision extension —-the extent to which identifying
knowledge for revision is guided by domain knowledge and spread in the theory.

BLIP. developed under the Sloppy Modeling approach [13]  is terminologically extensive.
The reasoning task. modeling. is defined in terms of objects in the theory (model), and the
terminology (predicates defined in the model] is refined by establishing the user the
semantics of predicates through the inclusion of meta-facts. This becomes a refinement
cycle in which the system reasons about the adequacy of the representation in terms of
the predicates and their semantics.

DISCIPLE [8.9.10]. which uses EBL to explain a user's solution. is not feedback-extensive:
feedback is only to the learning element —the explanation: the performance element
gains only in the verification of classification. BLIP is feedback—extensive: it allows in
one direction for model revision and in the other for theory extension; it uses the expert's
judgement to  extend or reorganize predicates and their semantics. which can be in turn
revised again. ‘

Murray‘s Kl [14] is revision-extensive: the search for consequences of new incoming
information is  guided by inference rules local to a concept's role and by the derived
dependencies  between domain knowledge objects: thus ,  possible consequences are
identified and presented to the domain expert with plausible resolution hypotheses.
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We think of a knowledge integration system as being domain-knowledge extensive. Then, 
it has to define its reasoning tasks in tenns of domain knowledge. That includes 
explaining the expert's advice in terms of domain knowledge objects and their relations. 
Second, It has to allowfor jlextble feedback from the user to the learning component and 
from this to the domatn theory. This can enable theory revision and includes exploting 
the expert's advice to expand the search for consequences of new information and to 
extend the theory (e.g., identlftcation of new concepts, relations, etc.). Ftnally, it must be 
able of effectively identifying knowledge Jor revision, and of appropriately proposing 
knowledge revisfDn hypotheses. That involves checking for local consistency and on 
higher levels of abstraction of the knowledge, and searching for consequences on the 
representation fonnalism level. 

3~1.2. IDteDslve U8e ofDomalD .Knowledfe 
Intensity in the use of domain knowledge is ·goal-oriented. In this sense, the term 
intensive means the extent to which the system is itself capable of guiding (i.e., 
controling) and expanding the search for consequences of new triformation to concepts, 
properties, etc. not explicitly contained in the new information. Intensive use of domain 
knowledge Is a requisite for autonomy of the knowledge acqulsiton task, and therefore of 
the knowledge integration task. 

An expert system is partially domain knowledge-intensive if it gUides search with only a 
manually prefixed set of general heuristics. As said before, that kind of abstractions (e.g., 
principles for reasonJng about evidence and the associated repair strategies in CASEY [11)) 
or dependency associations (e.g., the dependency network for knowledge base 
maintenance and consistency checking in MOLTKE/3 (12)) are necessary to search for 
consequences of change. Indeed, such abstractions might have been el1citated from the 
domain expert [12). 

But we are looking towards exploting domain knowledge for forming and reflntng search 
heuristics. For dependency associations. for instance, there still exists the need of 
traducing dependencies between knowledge structures or between knowledge objects into 

causal relationships which can allow interpreting knowledge interachons on more 
abstract levels [7]. 

Under the above view of intensity. Murray's KI is knowledge-intensive. The inference 
rules used to search for consequences of new information are domain-dependent and 
local to the concept's perspective (role) chosen by the expert. PROTOS [5], which 
introduces pieces of domain knowledge into the training, is knowledge-intensive too. It 
allows for integration of the tra1n1ng in the knowledge base at various levels of 
abstraction, as the train1ng may now include new meta-knowledge for the domain 
theory. Another knowledge-intensive approach Is that of Bradzil and Torgo [6). They 
propose integrating independent knowledge bases. The selection of rules for the final 
theory Is gUided by a characterization of the competing theories. under an experimental 
approach: rules are tested against (tratntng) cases generated from available domain data. 

We think of a knowledge integration system as being domain-knowledge extensive. Then.
it has to define its reasoning tasks in terms of domain knowledge. That includes
explaining the expert's advice in terms of domain knowledge objects and their relations.
Second. it has to allow for flexible feedback from the user to the learning component and
from this to the domain theory. This can enable theory revision and includes exploting
the expert's advice to expand the search for consequences of new information and to
extend the theory [e.g.. identification of new concepts. relations. etc.). Finally. it must be
able of effectively identifying knowledge for revision. and of appropriately proposing
knowledge revision hypotheses. That involves checking for local consistency and on
higher levels of abstraction of the knowledge. and searching for consequences on the
representation formalism level.

321:2. Intensive Use ofnomainlxnowledg‘e
Intensity in the use of domain knowledge is goal-oriented. In this sense. the term
intensive means the extent to which the system is itself capable of guiding (i.e..
controlingl and expanding the search for consequences of new information to concepts.
properties etc. not explicitly contained in the new information. Intensive use of domain
knowledge is a requisite for autonomy of the knowledge acquisiton task. and therefore of
the knowledge integration task.

An expert system is partially domain knowledge-intensive if it guides search with only a
manually prefixed set of general heuristics. As said before. that kind of abstractions (e.g..
principles for reasoning about evidence and the associated repair strategies in CASEY [1 1])
or dependency associations (e.g.. the dependency network for knowledge base
maintenance and consistency checking in MOLTKE/3 [12]) are necessary to search for
consequences of change. Indeed. such abstractions might have been elicitated from the
domain expert [12].

But we are looking towards exploting domain knowledge for forming and refining search
heuristics. For dependency associations. for instance. there still exists the need of
inducing dependences between knowledge structures or between knowledge objects into
causal relationships which can allow interpreting knowledge interactions on more '
abstract levels [7].

Under the above view of intensity. Murray's KI is knowledge-intensive. The inference
rules used to search for consequences of new information are domain-dependent and
local to the concept's perspective (role) chosen by the expert. PROTÖS [5].  which
introduces pieces of domain knowledge into the training. is knowledge-intensive too. It
allows for integration of the training in the knowledge base at various levels of
abstraction. as the training may now include new meta-knowledge for the domain
theory. Another knowledge-intensive approach is that of Bradzil and Torgo [6]. They
propose integrating independent knowledge bases. The selection of rules for the final
theory is  guided by a characterization of the competing theories. under an experimental
approach: rules are tested against (training) cases generated from available domain data.
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3.2. Support for Construction and Refinement of the Theory 

A knowledge integration system must aid the knowledge acquisition system in the task of 
supporting construction and refinement of the domain theory. The knowledge 
acquisition bottleneck cannot be solved without satisfying this requirement. The 
knowledge integration task is the operatlonallzation of a kind of lea!Il1ng tasks 
charactertzed by two features: elaboration (for knowledge expansion), and refinement. 
Also, the third step in the modellng cycle-evaluaUon of the model, must be covered by the 
knowledge integration task, and this step cannot be characterized per se under those two 
features4• 

The support for domain theory evaluation in a unique framework is indispenslble to 
ensure the proper feedback of the evaluation for revising, especially, the representation: 
this means Inferring qn the ~ermtnologlcal level possible deficiencies of the txpert 
system's performance due to Inapproprtate knowledge structures or relations between 
knowledge structures with relation to a certain reaSOning task.. This Is essential for 
expert system adaptation, and Is only possible if we have enough understanding of the 
purpose that knowledge structures serve for the given task. 

The knowledge integrator should be able of predicting the theory's behavtor in order to 
evaluate It. It must be able of testing the theory, and moreover, its own abUtty fo~ 

tritegrating knowledge. That means for us generating experiments whose results can serve 
for predicttngposslble faIlures of the system's perfonnance element due, among other 
reasons, to inadequate representations. inadequate terminology. or 
incomplete/Incorrect knowledge integration. 

The tasks of domain theory construction and refinement should be defined in an 
interactive, incremental manner. Incrementality is natural to refinement. More 
attention should be paid on the domain knowledge in order to allow for revision and 
reversabUtty at each step of the refinement process. We approach this by extending 
knowledge base maintenance to domain-dependent dependencies between objects in the 
domain theory. 

A ftnal and most Important property to dtseuss is leversabllity. The scope of this paper 
does not pe~t going depper in dtseussIng this point. However. it is Important to notice 
that reversability must be identtfled on two levels: on the domain knowledge (de­
/composition of beliefs) and on the representation level (for representation revision). 

In summary. the system must support construction and refinement of the theory. by (1) 

enabling evaluation of the theory on both the knowledge and on the representation level, 
essenU3.1 for expert system adaptability: (2) focusing refinement with revision as the goal; 
(3) extending knowledge base maintenance with domain-dependent dependencies between 
objects; and (4) allowing for reversabUtty of knowledge integration and of representation 
revision. 

4	 rather. evaluation Is seen as a separate task with feedback to the rnodeUng task itself. as in 
KEw [16] 

3.2. Support for Construction and Refinement of the Theory
A knowledge Integration system must aid the knowledge acquisition system in the task of
supporting construction and refinement of  the domain theory. The knowledge
acquisition bottleneck cannot be solved without satisfying this requirement. The
knowledge integration task is the operationalization of a kind of learning tasks
characterized by two features: elaboration (for knowledge expansion). and refinement.
Also. the third step in the modeling cycle—evaluation of the model. must be covered by the
knowledge integration task. and this step cannot be characterized per se under those two
features‘.

The support for domain theory evaluation in a unique framework is indispensible to
ensure the proper feedback of the evaluation for revising. especially. the representation:
this means inferring on the terminological level possible deficiencies of the expert
system's. performance due to inappropriate knowledge structures or relations between
knowledge structures with relation to a certain reasoning task. This is essential for
expert system adaptation. and is only possible if we have enough understanding of the
purpose that knowledge structures serve for the given task. ’ .

The knowledge integrator should be able of predicting the theory's behavior in order to
evaluate it. It must be able of testing the theory. and moreover. its own ability for
integrating knowledge. That means for us generating experiments whose results can serve
for predicting possible failures of the system's performance element due, among other
reasons ,  t o  inadequate  representat ions .  inadequate  terminology.  or
incomplete] incorrect knowledge integration.

The tasks of domain theory construction and refinement should be defined in an
interactive. incremental manner. Incrementality is  natural to refinement. More
attention should be paid on the domain knowledge in order to allow for revision and
reversability at each step of the refinement process. We approach this by extending
knowledge base maintenance to domain-dependent dependencies between objects in the
domain theory.

A final and most important property to discuss is reversability. The scope of this paper
does not permit going depper in discussing this point. However. it is important to notice
that reversability must be identified on two levels: on the domain knowledge (de-
/composition of beliefs) and on the representation level (for representation revision).

In summary. the system must support construction and refinement of the theory. by (l)
enabling evaluation of the theory on both the knowledge and on the representation level.
essential for expert system adaptability; (2) focusing refinement with. revision as the goal;
[3] extending knowledge base maintenance with domain-dependent dependencies between
objects: and (4) allowing for reversabtlity of knowledge integration and of  representation
revision.

4 rather. evaluation is seen as a separate task with feedback to the modeling task itself. as in
KEW [16]
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3.3.	 The Knowledge Integrator as an Assistant to the Domain Expert 
in the Knowledge Integration Task 

Another requirement reaches the confines of the knowledge acquisition system. and is 
necessary for knowledge integration to succeed. Knowledge integration is limited to the 
expert's advice if it does not understand the world. down from the domain's first 
principles. The knowledge integrator should act as an assistant of the domain expert in 
the theory refining process. The knowledge acqufsit10n system allows the expert system 
to acquire and learn from the expert's expertise. but it is necessary to introduce domain 
knowledge necessary to explain that expertise as it is acquired. Without this. the 
aSsistant cannot go beyond following the domain expert's advice and serving as an 
interface between the expert and the theory. 

To some extent. acquisition of expertise and knowledge necessary to understand the 
domain is already present in MOLTKE. The generation of shortcut rules from diagnostic 
cases represents expertise acquisition. ··in the sense that the domain expert decides 
whether shortcut rules mayor may not be applied. and this information is recorded. It 
also represents acquisition of knowledge necessary to understand the domain: the 
semantics of shortcut rules may be interpreted as relevance knowledge about symptoms 
in particular diagnostic situations. 

Knowledge integration should be justified on the domain (or on an elaboration of the 
expert's advice, which is endly Justified on her expertise in the domain). The acquisition 
and elaboration of expertise and of knowledge necessary for understanding the domain. 
must be extended to allow for discovering (first-) principles in such a way t..ltat they can be 
used to Justify knowledge integration. 

4. KNOWLEDGE INTEGRATION 

Knowledge integration means integrating new information in such a way that its 
consequences for the current knowledge are resolved to maintain the integrity of the 
knowledge base. In this paper. we describe our general knowledge integration framework 
within MOLTKE's approach to technical diagnosis. Figure 1 shows our functional view of 
knowledge integration for Moltke. This view is fully discussed in the next subsections. 

4,1. The Knowledge Integration Task 

Knowledge integration subsumes extension, which. as defined in approaches like 
DISCIPLE, means deriving new knowledge that either was implicit in the knowledge base, 
or is implicitly contained in user-presented examples. It implies revision. and thus. 
knowledge integration must also subsume revision. 

Some of the approaches used to 1llustrate the discussion in section 3 have already argued, 
within their own goals and terminology, the validity of knowledge integration as a 
learning task. For Murray (141. new knowledge is integrated paying attention to the 
consequences of the training for consistency of the domain theory. Braztiil & Torgo [61 

focus the problem on integrating diverse knowledge bases into one base. paying attention 
on the competition arised between knowledge bases. Mortk [131 presents an approach that 

3.3. The Knowledge Integrator as an Assistant to the Domain Expert
in the Knowledge Integration Task

Another requirement reaches the confines of the knowledge acquisition system. and is
necessary for knowledge integration to succeed. Knowledge integration is limited to the
expert's advice if it does not understand the world. down from the domain's first
principles. The knowledge integrator should act as an assistant of the domain expert in
the theory refining process. The knowledge acquisition system allows the expert system
to acquire and learn from the expert's expertise. but it is necessary to introduce domain
knowledge necessary to explain that expertise as it is acquired. Without this. the
as'sistant cannot go beyond following the domain expert's advice and serving as an
interface between the expert and the theory. .

To some extent. acquisition of expertise and knowledge necessary to understand the
domain is already present in MOL'lKE. The generation of shortcut rules from diagnostic
cases represents expertise acquisition. in the sense that the domain expert decides .
whether shortcut rules may or may not'be applied. and this information is recorded. It
also represents acquisition of knowledge necessary to understand the domain: the
semantics of shortcut rules may be interpreted as relevance knowledge about symptoms
in particular diagnostic situations.

Knowledge integration should be justified on the domain (or on an elaboration of the
expert's advice. which is endly justified on her expertise in the domain). The acquisition
and elaboration of expertise and of knowledge necessary for understanding the domain.
must beextended to allow for discovering (first-) principles in such a way that they can be
used to justify knowledge integration.

4. KNOWLEDGE INTEGRATION
Knowledge integration means integrating new information in such a way that its
consequences for the current knowledge are resolved to maintain the integrity of the
knowledge base. In this paper. we describe our general knowledge integration framework
within MOL'l‘KE's approach to technical diagnosis. Figure 1 shows our functional view of
knowledge integration for Moltke. This view is fully discussed in the next subsections.

4,  1 .  The Knowledge Integration Task
Knowledge integration subsumes extension. which. as defined in approaches like
DISCIPLE, means deriving new knowledge that either was implicit in the knowledge base.
or is implicitly contained in user-presented examples. It implies revision. and thus.
knowledge integration must also subsume revision.

Some of the approaches used to illustrate the discussion in section 3 have already argued.
within their own goals and terminology. the validity of knowledge integration as a
learning task. For Murray [14]. new knowledge is integrated paying attention to the
consequences of the training for consistency of. the domain theory. Brazdil & Torgo [6]
focus the problem on integrating diverse knowledge bases into one base. paying attention
on the competition arised between’lcnowledgé bases. Morik [13] presents an approach that
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allows for model construction. and the focus Is on allowing for refinement and revision. 

We agree with Brazdil and Torgo's view: integrating knowledge involves adjudicating 
among competing sourCes: Murray claims in this 'sense. that elaborating the fratntng 
involves solving this problem. And while the literature on BLIP might not discuss the 
isSue. it is possible to set BLIP's environment around competing theories and letting the 
modeUng task adjudicate among them. The differences between those approaches are in 

perspective or presentation. 

Model .- IIadeINew Theory of 
Change .,...I ~'DePartxI Layout 
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Cbanee Domain ,-4 I­
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Figure 1: Functional View of Knowledge Integration 

4.1.1. Ident:t8caUOIl and the Tbeary ofChange 

In order to integrate knowledge. we need to know which knowledge in the knowledge base 
will be affected. and how. by the insertion of new knowledge. The first step in knowledge 
integration is that of identtficatton. For this. we create a theory oJ change, which serves 
as a terminological basis for explanation of the cause.,effect relationships between 

. incoming and existing information. We describe this in terms of our technical diagnostic 
expert system. 

Changing the structure of the technical system generates inconsistencies. For instance. 
diagnostic knowledge about machine components which become physically connected to 
the new part may not be properly related to the diagnostic knowledge generated for the 
new part. Replacing a machine's part implies introducing in the domain theory the model 
of the new part and the associated diagnostic knowledge about that part and its subparts. 
After this. the diagnostic knowledge wtll only be related to other knowledge in the 
knowledge base by diagnostic-context refinement links associated directly to the 
structure of the machine (i.e.. a refinement link wtll only exist if the "refined-to" machine 
part 1s a subpart of the owner in the relation). 

The knowledge base maintenance component of MOLTKE is able of identifying and 

allows for model construction. and the focus is on allowing for refinement and revision.

We agree with Brazdil and Torgo's view: integrating knowledge involves adjudicating
among competing sourées‘; Murray claims in this sense. that elaborating the training
involves solving this problem. And while the literature on BLIP might not discuss the
issue. it is possible to set BLIP's environment around competing theories and letting the
modeling task adjudicate among them. The difl’erences between those approaches are in
perspective or presentation.
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Figure 1 :  Functional View of Knowledge Integration

4.1.1. Identification and the Theory damage

In order to integrate knowledge. we need to know which knowledge in the knowledge base
will be affected. and how. by the insertion of new knowledge. The first step in knowledge
integration is that of tdentmcation. For this. we create a theory of change. which serves
as a terminological basis for explanation of the cause-effect relationships between

,incoming and existing information. We describe this in terms of our technical diagnostic
expert system.

Changing the structure of the technical system generates inconsistencies. For instance.
diagnostic knowledge about machine components which become physically connected to ~
the new part may not be properly related to the diagnostic knowledge generated for the
new part. Replacing a machine's part implies introducing in the domain theory the model
of the new part and the associated diagnostic knowledge about that part and its subparts.
After this .  the  diagnostic knowledge will only be  related to other knowledge in the
knowledge base  by diagnostic-context refinement links associated directly to the
structure of the machine (Le .  a refinement link will only exist if the "refined-to" machine
part is a subpart of the owner in the relation).

The knowledge base maintenance component of MOLTKE is able of identifying and
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correcting syntactical and semantical domain-independent inconsistencies in a 
dependency network. But domain-dependent inconsistencies can only be idenUfted and 
Solved on the basis of domain-dependent dependencies between objects in the lmowledge 
base. Thus. for knowledge integration we extend the consistency maintenance component 
of MOLTKE to include Justifteatton links between instances of object classes in the 
knowledge base. Our tncremental revisfDn-onented reftnement approach focuses. on the 
deepest level of revision. those justification l1nks. to test for (domam-dependent) 
consistency. 

Ajustification is semanUca1ly seen as one object betng the (domain-dependent) reason 

for the existence of other objects in the dependency network. Justification links are 
typed. The type of a link IS dOmain-dependently determined by features in the struct~ 

and behavtor descriptions of the related machine parts and by first principles in the 
domain. This view allows for unrestricted extension of the dependency network and 
fIripUes the need oC learnJilg about justlflcatlon rtnk types. 

The theory of change describes a change situation: the set of objects in the theory with 
more than one justification link to any other object. being those Justlftcation links 
eqUivalent. That set of objects Is expanded through the justification links of one of its 
members unW no more justification links exist. The result is a subgraph of the 
dependency network. At thIS point. we sWI do not address co:nple."City and efficiency 
concerns in processing a change situation. For now. we will assume a way of index1ng the 
nodes in the graph (the objects in the domain theory) which have two or more equivalent 
just1ftcaUon links to other nodes. 

When· a machine part Is replaced. some objects in the dependency, network obtain new 
justification links. The first objects to be identified for revision are those haVing 
justification links corresponding to different machine's structures. That is. two 
j ustiftcation links of eqUivalent types otTer two different Justifications for the existence 
of an object in the domain theory. The s1m1larities and differences arising from those 
justifications (relevance knowledge) are the source for the elaboration of the knowledge 
for integration. The definition of equivalence of two justification link types is derived 
from the next discussion. 

4.1.2. Step 2: Causel FJaboratloD - ProposIng the InteJratlOD 

Given a change situation (the layout of a change in the machine's structure), we proceed to 
elaboration. Causal elaboration's goal is the comprehension of the structural change in 
ihe machine. It is not before we understand in what consists a change that we can proceed 
to incorporate it inthe domain theory. 

Understanding a change includes comparing the models of the replaced and the replacing 
machine parts. and comparing their relations to other parts. The comparison focuses the 
identification of relevant changes in behavtor that may cause, for instance, vtolations to 
first principles or a stgn1flcant sh1ft of focus to a different set of principles. The replaced 
and replacmg parts are assumed of similar functionality, and thus the violations or shift 
to different domain principles are used to learn about analogical classes of machine 
parts. Inducing new functionality classes is used to gUide knowledge integration for future 
change situations under an analogy-based approach. 
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correcting syntactical and semantical domain-independent inconsistencies in a
dependency network. But domain-dependent inconsistencies can only be identified and
solved on the basis of domain-dependent dependencies between objects in the knowledge
base. Thus. for knowledge integration we extend the consistency maintenance component
of MOLTKE to include Justification links between instances of object classes in the
knowledge base. Our incremental revision—oriented refinement approach focuses. on the
deepest level of revision. those justification links. to test for (domain-dependent)
consistency.

A justification is semantically seen as one object being the [domain-dependent) reason
for the existence of other objects in the dependency network. Justification links are
typed. The type of a link is domain-dependently determined by features in the structure
and behavior descriptions of the related machine parts and by‘flrst principles in the
domain. This view allows for unrestricted extension of the dependency network and
iniplies the need of learning about justification link types * ‘ ‘
The theory of change describes a change situation: the set of objects in the theory with
more than one justification link to any other object. being those justification links
equivalent. That set of objects is expanded through the justification links of one of its
members until no more justification links exist. The result is a subgraph of the
dependency network. At this point. we still do not address complexity and efficiency
concerns in processing a change situation. For now. we will assume a way of indexing the
nodes in the graph (the objects in the domain theory) which have two or more equivalent
justification links to other nodes.

When‘a machine part is replaced. some objects in the dependency network obtain new
justification links. The first objects to be identified for revision are those having
justification links corresponding to different machine‘s structures. That is.  two
justification links of equivalent types ofi'er two different justifications for the existence
of an object in the domain theory. The similarities and differences arising from those
justifications [relevance knowledge) are the source for the elaboration of the knowledge
for integration. The’definition of equivalence of two justification link types is derived
from the next discussion.

4.1.2. Step2: www—www“

Given a change situation (the layout of a change in the machine's structure). we proceed to
elaboration. Causal elaboration's goal is the comprehension of the structural change in
the machine. It is not before we understand in what consists a change that we can proceed
to incorporate it inthe domain theory.

Understanding a change includes comparing the models of the replaced and the replacing
machine parts. and comparing their relations to other parts. The comparison focuses the
identification of relevant changes in behavior that may cause. for instance. violations to
first principles or a significant shift of focus to a different set of principles. The replaced
and replacing parts are assumed of similar functionality. and thus the violations or shift
to different domain principles are used to learn about analogical classes of machine
parts. Inducing new fimctionaliiy classes is used to guide lmowledge integration for future
change situations under an analog-based approach.
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The output of causal elaboration is a proposal for lmowledge Integration a,s an agenda of 
Integration tasks identifying nodes in the dependency network and the operations that 
must be carried out on them to incorporate them consistently in the doIila1n theorY. The 
agenda supervises a cooperative. Incremental process of integration. in which the 
domain expert directs elaboration. that is. her advice is used for deciding which task 
should be executed next. and the knowledge integrator presents to the expert. elaborates. 
and processes the Integration tasks. Strategic knowledgels needed to construct 
integration tasks from the results of the compariSon of machine parts. This knowledge is 
acquired from two sources: directly from the domain expert. or by Induction from the 
domain prtnelples.Our d1alogue with the experts has shown that this kind of knowledge 
is so qeeply intricate in their expertise. that el1cltattng it with reasonable eXplanation of 
the advice is almost mpossible. This task requires of long periods of tra1n1ng in which 
the domaJn expert herself extracts, the relev8I!t information to construct ;:l model of 

. . ; - ; 

knowledge integration. That is Impracticable in our real-world application setting. 
Therefore. we cope with this task by defln1ng a prtm1tive set of adaptation strategies that 
associate patterns of similarity or difference In struct~re... and. behavlor with 
transformation operations. ThiS set is later extended using the domain expert's advice. 

• ~ 1.3. Step S: Emp1rlca1 EJabon.tlOll tJu:ouch EzperImentatlon 

Empirical elaboration evaluates the results of causal elaboration. We approach this 
through cooperative experimentation. by testing pieces of elaboration using dynamically 
generated experiments to be conducted in cooperation with the expert. An experiment 
begins with the proposition of a diagnostic situation and the simulation of the 
corresponding diagnostic task with the elaborated (now hypothetical) diagnostic 
lmowledge. Cooperative means that the generation of the experbnent. as well as the 
interpretation of results and consequent revision of the hypothetical diagnostic 
knowledge. '-are carried out by both the system and the expert. The system proposes 
experiments. presents evidence. and realizes the diagnostic simulation. and the domain 
expert gives advice to whether the proposed experiments need of modification. asks for 
evidence (thus potentially biasing the search Implicit In the elaboration of the 
expeI1ment). and directs the revision task derived from the expeI1ment. 

In our diagnostic expert system. integration includes. among others. modifying the 
machine's model. changing the diagnostic contexts. accordingly. revising shortcut and 
ordering rules. and. most important. predicting the consequences of change for 
experiential knowledge. The elaboration of a change for contexts is of a different nature 
as that for the experiential Imowledge. And both elaborations should lead toev1dence 
that can support orJustify each other. 

Causal elaboration Is defined as the task of predicting the consequences of structural 
changes for behavtor. and for diagnosis (the main problem is maintaining the context 
heterarchy's integrity). Empirical elaboration is the task of incrementally identifying 
experiential knowledge for revision and elaborating the consequences of its revision and 
of causal elaboration for experiential knowledge again. Thus. causal elaboration and 
empl.rical elaboration are complementary. while the integration steps of lay0pt and the 
whole elaboration form a feedback. incremental cycle. in which identifIcation leads to 
elaboration and this. in turn, to further identification. 

l l

The output of causal elaboration is a proposal for knowledge integration as an agenda of
integration tasks identifying nodes in the dependency network and the operations that
must be carried out on them to incorporate them consistently in the domain theory. The
agenda supervises a cooperative. incremental process of integration. in which the
domain expert directs elaboration. that is. her advice is used for deciding which task
should be executed next. and the knowledge integrator presents to the expert. elaborates.
and processes the integration tasks. Strategic knowledge, {is needed to construct
integration tasks from the results of the comparison of machine parts. This knowledge is
acquired from two sources: directly from the domain expert. or by induction from the
domain principles. Our dialogue with the experts has shown that this kind of knowledge
is so deeply intricate in their expertise. that elicitating it with reasonable explanation of
the advice is almost impossible. This task requires of long periods of training in which
the domain expert herself extracts the relevant information to construct a model of
knowledge integration That is impracticable in our real-world application setting.
Therefore, we cope with this task by defining a primitive set of adaptation strategies that
associate patterns of similarity or difference in structure and behavior with
transformation operations. This set is later extended using the domain expert's advice.

49.1.3. Steps:  unpiriealEhboratlanthroughExpei-lmentation

Empirical elaboration evaluates the results of causal elaboration. We approach this
through cooperative experimentation. by testing pieces of elaborauon using dynamically
generated experiments to be conducted in cooperation with the expert. An experiment
begins with the proposition of a diagnostic situation and the simulation of the
corresponding diagnostic task with the elaborated (now hypothetical) diagnostic
knowledge. Cooperative means that the generation of the experiment. as well as the
interpretation of results and consequent revision of the hypothetical diagnostic
knowledge.‘are carried out by both the system and the expert. The system proposes
experiments. presents evidence. and realizes the diagnostic simulation. and the domain
expert gives advice to whether the proposed experiments need of modification. asks for
evidence (thus potentially biasing the search implicit in the elaboration of  the
experiment). and directs the revision task derived from the experiment.

In our diagnostic expert system. integration includes. among others. modifying the
machine's-model. changing the diagnostic contexts accordingly. revising shortcut and
ordering rules, and. most important. predicting the consequences of change for
experiential knowledge. The elaboration of a change for contexts is of a different nature
as that for the experiential knowledge. And both elaborations should lead to evidence
that can support or justify each other.

Causal elaboration is defined as the task of predicting the consequences of structural
changes for behavior. and for diagnosis (the main problem is maintaining the context
heterarchy's integrity). Empirical elaboration is the task of incrementally identifying
experiential knowledge for revision and elaborating the consequences of its revision and
of causal elaboration for experiential knowledge again. Thus. causal elaboration and
empirical elaboration are complementary. while the integration steps of layout and the
whole elaboration form a feedback, incremental cycle. in which identification leads to
elaboration and this. in turn. to further identification.
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4.1.4. step 4: Incarporatloa. aDd FbuIl EnluatlOll 

The final step is the incorporation of (conflict-free) elaborated knowledge into the 
domain theory-. Incorporating means storing or reorganiZing. In the best case. the 
elaborated information Is simply stored wt.thout affectJng consistency (at least local. for 
instance. to a diagnostic contextl. But it Is reasonable to expect that in most of the cases 
the elaborated knowledge can be only tentatively stored and waiting for later test. The 
integrator acts incrementally. allowing for accommodation of pieces of an elaboration. A 
piece of elaboration may only be accommodated if at least local consistency is 
guaranteed. St1ll then. the knowledge Is tentatively stored until global consistency can be 
reached. 

Incorporation is an iterative process in which the results of elaboration are evaluated 
before proceeding to accommodation. The evaluation leads to a degree of confidence of the 
e'laboration. For this. e:xpertnients can be generated that tDclude qualitative simulation' 
of related machine parts' behavior. propagation of consistency constraints through the 
context heterarchy. ainoDg others. . 

We view incorporation sJ)l1t in four different tasks: expertmentatfDn. predictfDn. conflict 
resolutfDn. and accomodation. Experimentation has been deSCribed. Prediction involves 
interpreting the results of experimentation. An interpretation is used to evaluate 
eiaboraUon. Conflict resolution means solving contradictions that artse from 
elaboration or from experimentation and prediction. Solving a contradiction means 
giving credit or blame to alternative explanations of the contradiction. Explanations are 
rated andpreseIlted~.COnfltc::t resolution hypotheses to the user. 

4.2. Expanding the View to Expert System Adaptation 

The functional model for knowledge adaptation described so far ha~ been diSCUssed on a 
conceptual level of knowledge. A more abstract view Is needed to describe expert system 
adaptation. We view adaptation as the task of changing or evolving the representation in 
the presence of evidence that the expert system's domain task fails because of· 
shortCOmingS of the current knowledge structures. which l1m1t the expressive power of 
the domain theory. 

A means of evaluating the representation is needed in order to propose modifications to 
enable enhancements in the system's performance. The knowledge integration task 
defined here is an evaluation instrument suitable for evaluation of the representation. 

In this sense. a change situation represents a proposed change in the representation: 
idenUflcatlon is the task of determining which knowledge structures are affected by a 
change for some kind of knowledge: causal elaboration extends to finding conflicts on the 
domain task level (system's peIformance). and to propose transformation remedials: and 
empirical elaboration is a means of testing the remed1als. 
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4.1.4. Step4: mamma-11mm:

The final step is the incorporation of [conflict-free) elaborated lmowledge into the
domain theory. Incorporating means storing or reorganizing. In the best case. the
elaborated information is simply stored without afl‘ectin'g consistency (at least local. for
instance. to a diagnostic context). But it is reasonable to expect that in most of the cases
the elaborated knowledge can be only tentatively stored and waiting for later test. The
integrator acts incrementally. allowing for accommodation of pieces of an elaboration. A
piece of elaboration may only be accommodated if at least local consistency is
guaranteed. Still then. the knowledge is tentatively stored until global consistency can be
reached.

Incorporation is an iterative process in which the results'of elaboration are evaluated
before proceeding to accommodation. The evaluation leads to a degree of confidence of the
elaboration. For this.‘ experinients can be generated that include Qualitative simulation
of related machine parts' behavior. propagation of consistency constraints through the
context heterarchy. among others.

We view incorporation split in four difi'erent tasks: experimentation. prediction. conflict
resolution. and accomodation. Experimentation has been described. Prediction involves
interpreting the results of experimentation. An interpretation is used to evaluate
elaboration. Conflict resolution means solving contradictions that arise from
elaboration or from experimentation and prediction. Solving a contradiction means
giving credit or blame to alternative explanations of the contradiction. Explanations are
rated and „presented. asconfiict resolution hypotheses to the user.

4.2. upmding the View to Expert System Adaptation
The functional model for knowledge adaptation described so far has been discussed on a
conceptual level of knowledge. A more abstract view is needed to describe expert system
adaptation. We view adaptation as the task of changing or evolving the representation in
the presence of evidence that the expert system's domain task fails because of -
shortcomings of the current knowledge structures. which limit the expressive power of
the domain theory. .

A means of evaluating the representation is needed in order to propose modifications to
enable enhancements in the system's performance. The knowledge integration task
defined here is an evaluation instrument suitable for evaluation of the representation.

In this sense. a change situation represents a proposed change in the representation:
identification is the task of determining which knowledge structures are aifected by a
change for some kind of knowledge; causal elaboration extends to finding conflicts on the
domain task level (system's performance). and to propose transformation remedials; and
empirical elaboration is a means of testing the remedials. l
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5. DISCUSSION 

5.1. 1Dno'ftt1olul 

Our approach establishes many important and diverse requi~ents that the knowledge 
integration task must cope with in order to allow for expert system adaptability to 
structural changes In Its world. 

Our approach exploits domain knowledge extensively by elaborating on domaln­
dependently defined reasoning tasks. Feedback 18 ensured from the leamtng tasks to the 
domain theory and from the expert's advice to further learntng. And revision 18 enabled 
at all levels and on each step on the Integration process. The approach exploits domain 
knowledge intensively by extending knowle~e base maintenance withdomath­
dependent dependencies between domain objects In the lmowledge base. Maybe the most 
important innovation of AKILES 18 offertng a means of elavuattng the results of 
knowledge Integration on two levels: on the kn,o~ledge level, i.e.. the integrated 
knowledge, and on the representation level, I.e., the tennlnology and basic assumptions 
about the domain knowledge. 

5.2. State of ReaUmtlon and Future Work 

The MOLTKE/3 workbench Is fully implemented. Its implementation language Is 
Smalltalk-8O, and it runs on SUN 3/60 and- 3/80, HP 9000. Apollo. Mac n. and other 
workstatlons. The basic maintenance system Is being implemented. 

Currently. the subsystem to compare machine parts models to extract relevance 
knowledge for the identification step Is bemg developed. Also. an incremental version of 
the model complIer MAKE 18 being destgned. Scenarios for knowledge integration from 
various domains have been gathered and from there test knowledge bases for AKIIES are 
being prepared. The causal elaboration subsystem Is being developed. Today only small 
prototype programs have been des~ned to test fragments of causal elaboration. 
Emp1r1cal elaboration is still on the conceptual phase. We plan to have a fully 
implemented version of the elaborator by the end of May of 1991. The rest ofAKILES, that 
is. the evaluator and f.n:tegrator. are planed for tmpl~mentatlon durtng the summer of 
1991. 
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