Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-40478
Titel: | A Photoreceptor‐Based Hydrogel with Red Light‐Responsive Reversible Sol‐Gel Transition as Transient Cellular Matrix |
VerfasserIn: | Hörner, Maximilian Becker, Jan Bohnert, Rebecca Baños, Miguel Jerez‐Longres, Carolina Mühlhäuser, Vanessa Härrer, Daniel Wong, Tin Wang Meier, Matthias Weber, Wilfried |
Sprache: | Englisch |
Titel: | Advanced Materials Technologies |
Bandnummer: | 8 |
Heft: | 16 |
Verlag/Plattform: | Wiley |
Erscheinungsjahr: | 2023 |
Freie Schlagwörter: | cell deposition cellular matrix hydrogels materials microfluidics optogenetics |
DDC-Sachgruppe: | 500 Naturwissenschaften |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Hydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano-responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor-based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star-shaped polyethylene glycol, functionalized with the red/far-red light photoreceptor phytochrome B (PhyB), or phytochrome-interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far-red light, the proteins dissociate and trigger a complete gel-to-sol transition. The hydrogel’s light-responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site- and time-specific positioning of cells and will contribute to overcome spatial restrictions. |
DOI der Erstveröffentlichung: | 10.1002/admt.202300195 |
URL der Erstveröffentlichung: | https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202300195 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-404786 hdl:20.500.11880/36365 http://dx.doi.org/10.22028/D291-40478 |
ISSN: | 2365-709X |
Datum des Eintrags: | 4-Sep-2023 |
Bezeichnung des in Beziehung stehenden Objekts: | Supporting Information |
In Beziehung stehendes Objekt: | https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadmt.202300195&file=admt202300195-sup-0001-SuppMat.pdf |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Materialwissenschaft und Werkstofftechnik |
Professur: | NT - Prof. Dr. Wilfried Weber |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Adv Materials Technologies - 2023 - H rner.pdf | 1,71 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons