Please use this identifier to cite or link to this item: doi:10.22028/D291-40458
Title: Efficient simulation of non-Markovian dynamics on complex networks
Author(s): Großmann, Gerrit
Bortolussi, Luca
Wolf, Verena
Language: English
Title: PloS One
Volume: 15
Issue: 10
Publisher/Platform: Plos
Year of Publication: 2020
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: We study continuous-time multi-agent models, where agents interact according to a network topology. At any point in time, each agent occupies a specific local node state. Agents change their state at random through interactions with neighboring agents. The time until a transition happens can follow an arbitrary probability density. Stochastic (Monte-Carlo) simulations are often the preferred—sometimes the only feasible—approach to study the complex emerging dynamical patterns of such systems. However, each simulation run comes with high computational costs mostly due to updating the instantaneous rates of interconnected agents after each transition. This work proposes a stochastic rejection-based, eventdriven simulation algorithm that scales extremely well with the size and connectivity of the underlying contact network and produces statistically correct samples. We demonstrate the effectiveness of our method on different information spreading models.
DOI of the first publication: 10.1371/journal.pone.0241394
URL of the first publication: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241394
Link to this record: urn:nbn:de:bsz:291--ds-404585
hdl:20.500.11880/36353
http://dx.doi.org/10.22028/D291-40458
ISSN: 1932-6203
Date of registration: 1-Sep-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Verena Wolf
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
file.pdf1,13 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons