Please use this identifier to cite or link to this item: doi:10.22028/D291-40301
Title: Prescribed-time control for a class of semilinear hyperbolic PDE-ODE systems
Author(s): Irscheid, Abdurrahman
Espitia, Nicolas
Perruquetti, Wilfrid
Rudolph, Joachim
Language: English
Title: IFAC-PapersOnLine
Volume: 55
Issue: 26
Pages: 47-52
Publisher/Platform: Elsevier
Year of Publication: 2022
Free key words: distributed parameter systems
nonlinear PDE-ODE systems
semilinear hyperbolic systems
boundary control
prescribed-time control
prediction
DDC notations: 500 Science
Publikation type: Conference Paper
Abstract: A prediction-based controller is shown to achieve prescribed-time stabilization of a nonlinear infinite-dimensional system, which consists of a general boundary controlled first-order semilinear hyperbolic PDE that is bidirectionally interconnected with nonlinear ODEs at its unactuated boundary. The approach uses a coordinate transformation to map the nonlinear system into a form suitable for control. In particular, this transformation is based on predictions of system trajectories, which can be obtained by solving a general nonlinear Volterra integro-differential equation. Then, a prediction-based controller is designed to stabilize the system in prescribed-time. Numerical simulations illustrate the performance of both the prescribed-time controller and an asymptotically stabilizing one, which follows as a special case.
DOI of the first publication: 10.1016/j.ifacol.2022.10.375
URL of the first publication: https://www.sciencedirect.com/science/article/pii/S2405896322024181
Link to this record: urn:nbn:de:bsz:291--ds-403015
hdl:20.500.11880/36209
http://dx.doi.org/10.22028/D291-40301
ISSN: 2405-8963
Date of registration: 10-Aug-2023
Notes: IFAC PapersOnLine, Volume 55, Issue 26, 2022, Pages 47-52
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Joachim Rudolph
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S2405896322024181-main.pdf708,66 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons