Please use this identifier to cite or link to this item:
doi:10.22028/D291-40058
Title: | Paralogs of the Calcium-Dependent Activator Protein for Secretion Differentially Regulate Synaptic Transmission and Peptide Secretion in Sensory Neurons |
Author(s): | Shaib, Ali H. Staudt, Angelina Harb, Ali Klose, Margarete Shaaban, Ahmed Schirra, Claudia Mohrmann, Ralf Rettig, Jens Becherer, Ute |
Language: | English |
Title: | Frontiers in Cellular Neuroscience |
Volume: | 12 |
Publisher/Platform: | Frontiers |
Year of Publication: | 2018 |
Free key words: | DRG neurons CADPS exocytosis priming large dense core vesicle synaptic transmission neuropeptide |
DDC notations: | 610 Medicine and health |
Publikation type: | Journal Article |
Abstract: | The two paralogs of the calcium-dependent activator protein for secretion (CAPS) are priming factors for synaptic vesicles (SVs) and neuropeptide containing large dense-core vesicles (LDCVs). Yet, it is unclear whether CAPS1 and CAPS2 regulate exocytosis of these two vesicle types differentially in dorsal root ganglion (DRG) neurons, wherein synaptic transmission and neuropeptide release are of equal importance. These sensory neurons transfer information from the periphery to the spinal cord (SC), releasing glutamate as the primary neurotransmitter, with co-transmission via neuropeptides in a subset of so called peptidergic neurons. Neuropeptides are key components of the information-processing machinery of pain perception and neuropathic pain generation. Here, we compared the ability of CAPS1 and CAPS2 to support priming of both vesicle types in single and double knock-out mouse (DRG) neurons using a variety of high-resolution live cell imaging methods. While CAPS1 was localized to synapses of all DRG neurons and promoted synaptic transmission, CAPS2 was found exclusively in peptidergic neurons and mediated LDCV exocytosis. Intriguingly, ectopic expression of CAPS2 empowered non-peptidergic neurons to drive LDCV fusion, thereby identifying CAPS2 as an essential molecular determinant for peptidergic signaling. Our results reveal that these distinct functions of both CAPS paralogs are based on their differential subcellular localization in DRG neurons. Our data suggest a major role for CAPS2 in neuropathic pain via control of neuropeptide release. |
DOI of the first publication: | 10.3389/fncel.2018.00304 |
URL of the first publication: | https://www.frontiersin.org/articles/10.3389/fncel.2018.00304 |
Link to this record: | urn:nbn:de:bsz:291--ds-400584 hdl:20.500.11880/36067 http://dx.doi.org/10.22028/D291-40058 |
ISSN: | 1662-5102 |
Date of registration: | 3-Jul-2023 |
Description of the related object: | Supplementary Material |
Related object: | https://www.frontiersin.org/articles/file/downloadfile/410078_supplementary-materials_datasheets_1_pdf/octet-stream/Data%20Sheet%201.pdf/2/410078 |
Faculty: | M - Medizinische Fakultät |
Department: | M - Physiologie |
Professorship: | M - Prof. Dr. Jens Rettig |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
fncel-12-00304.pdf | 3,76 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License