Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39892
Titel: Artificial-intelligence-based decision support tools for the differential diagnosis of colitis
VerfasserIn: Guimarães, Pedro
Finkler, Helen
Reichert, Matthias Christian
Zimmer, Vincent
Grünhage, Frank
Krawczyk, Marcin
Lammert, Frank
Keller, Andreas
Casper, Markus
Sprache: Englisch
Titel: European Journal of Clinical Investigation
Bandnummer: 53
Heft: 6
Verlag/Plattform: Wiley
Erscheinungsjahr: 2023
Freie Schlagwörter: computer-aided detection
computer-aided diagnosis
endoscopy
infectious colitis
inflammatory bowel disease
ischemic colitis
neuronal network
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background: Whereas Artificial Intelligence (AI) based tools have recently been introduced in the field of gastroenterology, application in inflammatory bowel disease (IBD) is in its infancies. We established AI-based algorithms to distinguish IBD from infectious and ischemic colitis using endoscopic images and clinical data. Methods: First, we trained and tested a Convolutional Neural Network (CNN) using 1796 real-world images from 494 patients, presenting with three diseases (IBD [n = 212], ischemic colitis [n = 157], and infectious colitis [n = 125]). Moreover, we evaluated a Gradient Boosted Decision Trees (GBDT) algorithm using five clinical parameters as well as a hybrid approach (CNN+GBDT). Patients and images were randomly split into two completely independent datasets. The proposed approaches were benchmarked against each other and three expert endoscopists on the test set. Results: For the image-based CNN, the GBDT algorithm and the hybrid approach global accuracies were .709, .792, and .766, respectively. Positive predictive values were .602, .702, and .657. Global areas under the receiver operating characteristics (ROC) and precision recall (PR) curves were .727/.585, .888/.823, and .838/.733, respectively. Global accuracy did not differ between CNN and endoscopists (.721), but the clinical parameter-based GBDT algorithm outperformed CNN and expert image classification. Conclusions: Decision support systems exclusively based on endoscopic image analysis for the differential diagnosis of colitis, representing a complex clinical challenge, seem not yet to be ready for primetime and more diverse image datasets may be necessary to improve performance in future development. The clinical value of the proposed clinical parameters algorithm should be evaluated in prospective cohorts.
DOI der Erstveröffentlichung: 10.1111/eci.13960
URL der Erstveröffentlichung: https://onlinelibrary.wiley.com/doi/10.1111/eci.13960
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-398929
hdl:20.500.11880/35911
http://dx.doi.org/10.22028/D291-39892
ISSN: 1365-2362
0014-2972
Datum des Eintrags: 31-Mai-2023
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Feci.13960&file=eci13960-sup-0001-AppendixS1.docx
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Innere Medizin
M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professur: M - Univ.-Prof. Dr. Andreas Keller
M - Keiner Pofessur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons