Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-39892
Titel: | Artificial-intelligence-based decision support tools for the differential diagnosis of colitis |
VerfasserIn: | Guimarães, Pedro Finkler, Helen Reichert, Matthias Christian Zimmer, Vincent Grünhage, Frank Krawczyk, Marcin Lammert, Frank Keller, Andreas Casper, Markus |
Sprache: | Englisch |
Titel: | European Journal of Clinical Investigation |
Bandnummer: | 53 |
Heft: | 6 |
Verlag/Plattform: | Wiley |
Erscheinungsjahr: | 2023 |
Freie Schlagwörter: | computer-aided detection computer-aided diagnosis endoscopy infectious colitis inflammatory bowel disease ischemic colitis neuronal network |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Background: Whereas Artificial Intelligence (AI) based tools have recently been introduced in the field of gastroenterology, application in inflammatory bowel disease (IBD) is in its infancies. We established AI-based algorithms to distinguish IBD from infectious and ischemic colitis using endoscopic images and clinical data. Methods: First, we trained and tested a Convolutional Neural Network (CNN) using 1796 real-world images from 494 patients, presenting with three diseases (IBD [n = 212], ischemic colitis [n = 157], and infectious colitis [n = 125]). Moreover, we evaluated a Gradient Boosted Decision Trees (GBDT) algorithm using five clinical parameters as well as a hybrid approach (CNN+GBDT). Patients and images were randomly split into two completely independent datasets. The proposed approaches were benchmarked against each other and three expert endoscopists on the test set. Results: For the image-based CNN, the GBDT algorithm and the hybrid approach global accuracies were .709, .792, and .766, respectively. Positive predictive values were .602, .702, and .657. Global areas under the receiver operating characteristics (ROC) and precision recall (PR) curves were .727/.585, .888/.823, and .838/.733, respectively. Global accuracy did not differ between CNN and endoscopists (.721), but the clinical parameter-based GBDT algorithm outperformed CNN and expert image classification. Conclusions: Decision support systems exclusively based on endoscopic image analysis for the differential diagnosis of colitis, representing a complex clinical challenge, seem not yet to be ready for primetime and more diverse image datasets may be necessary to improve performance in future development. The clinical value of the proposed clinical parameters algorithm should be evaluated in prospective cohorts. |
DOI der Erstveröffentlichung: | 10.1111/eci.13960 |
URL der Erstveröffentlichung: | https://onlinelibrary.wiley.com/doi/10.1111/eci.13960 |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-398929 hdl:20.500.11880/35911 http://dx.doi.org/10.22028/D291-39892 |
ISSN: | 1365-2362 0014-2972 |
Datum des Eintrags: | 31-Mai-2023 |
Bezeichnung des in Beziehung stehenden Objekts: | Supporting Information |
In Beziehung stehendes Objekt: | https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Feci.13960&file=eci13960-sup-0001-AppendixS1.docx |
Fakultät: | M - Medizinische Fakultät |
Fachrichtung: | M - Innere Medizin M - Medizinische Biometrie, Epidemiologie und medizinische Informatik |
Professur: | M - Univ.-Prof. Dr. Andreas Keller M - Keiner Pofessur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Eur J Clin Investigation - 2023 - Guimar es - Artificial‐intelligence‐based decision support tools for the differential.pdf | 4,49 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons