Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39880
Titel: The Changing Environment in Postgraduate Education in Orthopedic Surgery and Neurosurgery and Its Impact on Technology-Driven Targeted Interventional and Surgical Pain Management : Perspectives from Europe, Latin America, Asia, and The United States
VerfasserIn: Lewandrowski, Kai-Uwe
Elfar, John C.
Li, Zong-Ming
Burkhardt, Benedikt W.
Lorio, Morgan P.
Winkler, Peter A.
Oertel, Joachim M.
Telfeian, Albert E.
Dowling, Álvaro
Vargas, Roth A. A.
Ramina, Ricardo
Abraham, Ivo
Assefi, Marjan
Yang, Huilin
Zhang, Xifeng
Ramírez León, Jorge Felipe
Fiorelli, Rossano Kepler Alvim
Pereira, Mauricio G.
de Carvalho, Paulo Sérgio Teixeira
Defino, Helton
Moyano, Jaime
Lim, Kang Taek
Kim, Hyeun-Sung
Montemurro, Nicola
Yeung, Anthony
Novellino, Pietro
Sprache: Englisch
Titel: Journal of Personalized Medicine
Bandnummer: 13
Heft: 5
Verlag/Plattform: MDPI
Erscheinungsjahr: 2023
Freie Schlagwörter: postgraduate residence training
orthopedic surgery
neurosurgery
technology advances
simulation
augmented reality
navigation
robotics
artificial intelligence
skill-based training
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Personalized care models are dominating modern medicine. These models are rooted in teaching future physicians the skill set to keep up with innovation. In orthopedic surgery and neurosurgery, education is increasingly influenced by augmented reality, simulation, navigation, robotics, and in some cases, artificial intelligence. The postpandemic learning environment has also changed, emphasizing online learning and skill- and competency-based teaching models incorporating clinical and bench-top research. Attempts to improve work–life balance and minimize physician burnout have led to work-hour restrictions in postgraduate training programs. These restrictions have made it particularly challenging for orthopedic and neurosurgery residents to acquire the knowledge and skill set to meet the requirements for certification. The fast-paced flow of information and the rapid implementation of innovation require higher efficiencies in the modern postgraduate training environment. However, what is taught typically lags several years behind. Examples include minimally invasive tissue-sparing techniques through tubular small-bladed retractor systems, robotic and navigation, endoscopic, patient-specific implants made possible by advances in imaging technology and 3D printing, and regenerative strategies. Currently, the traditional roles of mentee and mentor are being redefined. The future orthopedic surgeons and neurosurgeons involved in personalized surgical pain management will need to be versed in several disciplines ranging from bioengineering, basic research, computer, social and health sciences, clinical study, trial design, public health policy development, and economic accountability. Solutions to the fast-paced innovation cycle in orthopedic surgery and neurosurgery include adaptive learning skills to seize opportunities for innovation with execution and implementation by facilitating translational research and clinical program development across traditional boundaries between clinical and nonclinical specialties. Preparing the future generation of surgeons to have the aptitude to keep up with the rapid technological advances is challenging for postgraduate residency programs and accreditation agencies. However, implementing clinical protocol change when the entrepreneur–investigator surgeon substantiates it with high-grade clinical evidence is at the heart of personalized surgical pain management.
DOI der Erstveröffentlichung: 10.3390/jpm13050852
URL der Erstveröffentlichung: https://doi.org/10.3390/jpm13050852
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-398800
hdl:20.500.11880/35908
http://dx.doi.org/10.22028/D291-39880
ISSN: 2075-4426
Datum des Eintrags: 30-Mai-2023
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Neurochirurgie
Professur: M - Prof. Dr. Joachim Oertel
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
jpm-13-00852-v2.pdf1,9 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons