Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39530
Volltext verfügbar? / Dokumentlieferung
Titel: Plasmonic stimulation of gold nanorods for the photothermal control of engineered living materials
VerfasserIn: Basaran, Selim
Dey, Sourik
Bhusari, Shardul
Sankaran, Shrikrishnan
Kraus, Tobias
Sprache: Englisch
Titel: Biomaterials Advances
Bandnummer: 147
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2023
Freie Schlagwörter: Engineered living materials
Near infrared stimulation
Surface plasmon resonance
Photothermal nanocomposite
Thermogenetics
DDC-Sachgruppe: 540 Chemie
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Engineered living materials (ELMs) encapsulate microorganisms within polymeric matrices for biosensing, drug delivery, capturing viruses, and bioremediation. It is often desirable to control their function remotely and in real time and so the microorganisms are often genetically engineered to respond to external stimuli. Here, we combine thermogenetically engineered microorganisms with inorganic nanostructures to sensitize an ELM to near infrared light. For this, we use plasmonic gold nanorods (AuNR) that have a strong absorption maximum at 808 nm, a wavelength where human tissue is relatively transparent. These are combined with Pluronic-based hydrogel to generate a nanocomposite gel that can convert incident near infrared light into heat locally. We perform transient temperature measurements and find a photothermal conversion efficiency of 47 %. Steady-state temperature profiles from local photothermal heating are quantified using infrared photothermal imaging and correlated with measurements inside the gel to reconstruct spatial temperature profiles. Bilayer geometries are used to combine AuNR and bacteria-containing gel layers to mimic core-shell ELMs. The thermoplasmonic heating of an AuNR-containing hydrogel layer that is exposed to infrared light diffuses to the separate but connected hydrogel layer with bacteria and stimulates them to produce a fluorescent protein. By tuning the intensity of the incident light, it is possible to activate either the entire bacterial population or only a localized region.
DOI der Erstveröffentlichung: 10.1016/j.bioadv.2023.213332
URL der Erstveröffentlichung: https://doi.org/10.1016/j.bioadv.2023.213332
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-395301
hdl:20.500.11880/35862
http://dx.doi.org/10.22028/D291-39530
ISSN: 2772-9508
2772-9516
Datum des Eintrags: 22-Mai-2023
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Chemie
Professur: NT - Prof. Dr. Tobias Kraus
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.