Please use this identifier to cite or link to this item: doi:10.22028/D291-39737
Volltext verfügbar? / Dokumentlieferung
Title: 3D Image-Based Stochastic Micro-structure Modelling of Foams for Simulating Elasticity
Author(s): Jung, Anne
Redenbach, Claudia
Schladitz, Katja
Staub, Sarah
Editor(s): Español, Malena I.
Lewicka, Marta
Scardia, Lucia
Schlömerkemper, Anja
Language: English
Title: Research in Mathematics of Materials Science
Volume: 31
Pages: 257-282
Publisher/Platform: Springer Nature
Year of Publication: 2022
DDC notations: 500 Science
Publikation type: Book Chapter
Abstract: Image acquisition techniques such as micro-computed tomography are nowadays widely available. Quantitative analysis of the resulting 3D image data enables geometric characterization of the micro-structure of materials. Stochastic geometry models can be fit to the observed micro-structures. By alteration of the model parameters, virtual micro-structures with modified geometry can be generated. Numerical simulation of elastic properties in realizations of these models yields deeper insight on the influence of particular micro-structural features. Ultimately, this allows for an optimization of the micro-structure geometry for particular applications. Here, we present this workflow at the example of open-cell foams. Applicability is demonstrated using an aluminum alloy foam sample. The structure observed in a micro-computed tomography image is modelled by the edge system of a random Laguerre tessellation generated by a system of closely packed spheres. Elastic moduli are computed in the binarized µCT image of the foam as well as in realizations of the model. They agree well with the results of a compression test on the real material.
DOI of the first publication: 10.1007/978-3-031-04496-0_11
URL of the first publication: https://link.springer.com/chapter/10.1007/978-3-031-04496-0_11
Link to this record: urn:nbn:de:bsz:291--ds-397374
hdl:20.500.11880/35805
http://dx.doi.org/10.22028/D291-39737
ISBN: 978-3-031-04495-3
978-3-031-04496-0
ISSN: 2364-5741
2364-5733
Date of registration: 11-May-2023
Notes: Association for Women in Mathematics Series ; Volume 31
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Stefan Diebels
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.