Please use this identifier to cite or link to this item: doi:10.22028/D291-39705
Title: Quantum Permutation Matrices
Author(s): Weber, Moritz
Language: English
Title: Complex Analysis and Operator Theory
Volume: 17
Issue: 3
Publisher/Platform: Springer Nature
Year of Publication: 2023
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Quantum permutations arise in many aspects of modern “quantum mathematics”. However, the aim of this article is to detach these objects from their context and to give a friendly introduction purely within operator theory. We define quantum permutation matrices as matrices whose entries are operators on Hilbert spaces; they obey certain assumptions generalizing classical permutation matrices. We give a number of examples and we list many open problems. We then put them back in their original context and give an overview of their use in several branches of mathematics, such as quantum groups, quantum information theory, graph theory and free probability theory.
DOI of the first publication: 10.1007/s11785-023-01335-x
URL of the first publication: https://link.springer.com/article/10.1007/s11785-023-01335-x
Link to this record: urn:nbn:de:bsz:291--ds-397058
hdl:20.500.11880/35774
http://dx.doi.org/10.22028/D291-39705
ISSN: 1661-8262
1661-8254
Date of registration: 8-May-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Jun.-Prof. Dr. Moritz Weber
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s11785-023-01335-x.pdf415,79 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons