Please use this identifier to cite or link to this item: doi:10.22028/D291-39683
Title: Entangling single atoms over 33 km telecom fibre
Author(s): van Leent, Tim
Bock, Matthias
Fertig, Florian
Garthoff, Robert
Eppelt, Sebastian
Zhou, Yiru
Malik, Pooja
Seubert, Matthias
Bauer, Tobias
Rosenfeld, Wenjamin
Zhang, Wei
Becher, Christoph
Weinfurter, Harald
Language: English
Title: Nature
Volume: 607
Issue: 7917
Pages: 69-73
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: Atomic and molecular interactions with photons
Quantum information
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Quantum networks promise to provide the infrastructure for many disruptive applications, such as efcient long-distance quantum communication and distributed quantum computing1,2 . Central to these networks is the ability to distribute entanglement between distant nodes using photonic channels. Initially developed for quantum teleportation3,4 and loophole-free tests of Bell’s inequality5,6 , recently, entanglement distribution has also been achieved over telecom fbres and analysed retrospectively7,8 . Yet, to fully use entanglement over long-distance quantum network links it is mandatory to know it is available at the nodes before the entangled state decays. Here we demonstrate heralded entanglement between two independently trapped single rubidium atoms generated over fbre links with a length up to 33 km. For this, we generate atom–photon entanglement in two nodes located in buildings 400 m line-of-sight apart and to overcome high-attenuation losses in the fbres convert the photons to telecom wavelength using polarization-preserving quantum frequency conversion9 . The long fbres guide the photons to a Bell-state measurement setup in which a successful photonic projection measurement heralds the entanglement of the atoms10. Our results show the feasibility of entanglement distribution over telecom fbre links useful, for example, for device-independent quantum key distribution11–13 and quantum repeater protocols. The presented work represents an important step towards the realization of large-scale quantum network links.
DOI of the first publication: 10.1038/s41586-022-04764-4
URL of the first publication: https://www.nature.com/articles/s41586-022-04764-4
Link to this record: urn:nbn:de:bsz:291--ds-396838
hdl:20.500.11880/35761
http://dx.doi.org/10.22028/D291-39683
ISSN: 1476-4687
0028-0836
Date of registration: 5-May-2023
Description of the related object: Supplementary information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-022-04764-4/MediaObjects/41586_2022_4764_MOESM1_ESM.pdf
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Physik
Professorship: NT - Prof. Dr. Christoph Becher
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41586-022-04764-4.pdf2 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons