Please use this identifier to cite or link to this item: doi:10.22028/D291-39420
Volltext verfügbar? / Dokumentlieferung
Title: A Classification Algorithm for Anomaly Detection in Terahertz Tomography
Author(s): Meiser, Clemens
Schuster, Thomas
Wald, Anne
Editor(s): Lirkov, Ivan
Margenov, Svetozar
Language: English
Title: Large-Scale Scientific Computing
Publisher/Platform: Springer Nature
Year of Publication: 2022
Free key words: Anomaly detection
Inline monitoring
Terahertz tomography
DDC notations: 510 Mathematics
Publikation type: Conference Paper
Abstract: Terahertz tomography represents an emerging field in the area of nondestructive testing. Detecting outliers in measurements that are caused by defects is the main challenge in inline process monitoring. An efficient inline control enables to intervene directly during the manufacturing process and, consequently, to reduce product discard. We focus on plastics and ceramics and propose a density-based technique to automatically detect anomalies in the measured data of the radiation. The algorithm relies on a classification method based on machine learning. For a verification, supervised data are generated by a measuring system that approximates an inline process. The experimental results show that the use of terahertz radiation, combined with the classification algorithm, has great potential for a real inline manufacturing process.
DOI of the first publication: 10.1007/978-3-030-97549-4_45
URL of the first publication: https://link.springer.com/chapter/10.1007/978-3-030-97549-4_45
Link to this record: urn:nbn:de:bsz:291--ds-394204
hdl:20.500.11880/35540
http://dx.doi.org/10.22028/D291-39420
ISBN: 978-3-030-97549-4
978-3-030-97548-7
Date of registration: 30-Mar-2023
Notes: 13th International Conference on Large-Scale Scientific Computations (LSSC 2021), Sozopol, Bulgaria, June 7–11, 2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Thomas Schuster
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.