Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-39418
Titel: A method for determining the parameters in a rheological model for viscoelastic materials by minimizing Tikhonov functionals
VerfasserIn: Rothermel, Rebecca
Panfilenko, Wladimir
Sharma, Prateek
Wald, Anne
Schuster, Thomas
Jung, Anne
Diebels, Stefan
Sprache: Englisch
Titel: Applied Mathematics in Science and Engineering
Bandnummer: 30
Heft: 1
Seiten: 141-165
Verlag/Plattform: Taylor & Francis
Erscheinungsjahr: 2022
Freie Schlagwörter: Parameter identification
viscoelasticity
inverse problem
rheological mode
solution dependent forward operator
Tikhonov functional
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Parameter estimation for generalized Maxwell models for viscoelastic materials can become ill-posed when insufficient experimental data is available. In this article, we introduce a rheological model containing Maxwell elements, define the associated forward operator and the inverse problem in order to determine the number of Maxwell elements and the material parameters of the underlying viscoelastic material. We simulate a relaxation experiment by applying a strain to the material and measure the generated stress. Since the mechanical response varies with the number of Maxwell elements, the forward operator of the underlying inverse problem depends on parts of the solution. Thereby, the forward problem consists in computing stress responses for a given number of Maxwell elements, stiffness parameters and relaxation times. The inverse problem means to compute these parameters from given stress measurements, where an additional difficulty lies in the fact that the forward mapping changes with the number of Maxwell elements and, thus, with a quantity to be computed as part of the solution. Under the assumption that every relaxation time is located in one temporal decade we propose a clustering algorithm to resolve this problem. We provide the calculations that are necessary for the minimization process and conclude by investigating unperturbed as well as noisy data. Different reconstruction approaches for the stiffnesses and relaxation times based on minimizing a least squares functional are presented. We look at individual stress components to analyze different strain rates and displacement rates, respectively, and study how experimental duration affects the identified material parameters.
DOI der Erstveröffentlichung: 10.1080/17415977.2022.2026943
URL der Erstveröffentlichung: https://www.tandfonline.com/doi/full/10.1080/17415977.2022.2026943
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-394181
hdl:20.500.11880/35539
http://dx.doi.org/10.22028/D291-39418
ISSN: 2769-0911
Datum des Eintrags: 30-Mär-2023
Fakultät: MI - Fakultät für Mathematik und Informatik
NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: MI - Mathematik
NT - Materialwissenschaft und Werkstofftechnik
Professur: MI - Prof. Dr. Thomas Schuster
NT - Prof. Dr. Stefan Diebels
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons