Please use this identifier to cite or link to this item: doi:10.22028/D291-38961
Volltext verfügbar? / Dokumentlieferung
Title: A physiologically based pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin-integration of in vitro results, Phase I and Phase II data and model application for drug-drug interaction potential analysis
Author(s): Hanke, Nina
Teifel, Michael
Moj, Daniel
Wojtyniak, Jan-Georg
Britz, Hannah
Aicher, Babette
Sindermann, Herbert
Ammer, Nicola
Lehr, Thorsten
Language: English
Title: Cancer Chemotherapy and Pharmacology
Volume: 81 (2018)
Issue: 2
Pages: 291-304
Publisher/Platform: Springer Nature
Year of Publication: 2017
Free key words: AEZS-10
AN-152
Doxorubicin
PBPK modeling
Drug–drug interaction
Targeted chemotherapy
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Purpose Zoptarelin doxorubicin is a fusion molecule of the chemotherapeutic doxorubicin and a luteinizing hormonereleasing hormone receptor (LHRHR) agonist, designed for drug targeting to LHRHR positive tumors. The aim of this study was to establish a physiologically based pharmacokinetic (PBPK) parent-metabolite model of zoptarelin doxorubicin and to apply it for drug–drug interaction (DDI) potential analysis. Methods The PBPK model was built in a two-step procedure. First, a model for doxorubicin was developed, using clinical data of a doxorubicin study arm. Second, a parent-metabolite model for zoptarelin doxorubicin was built, using clinical data of three different zoptarelin doxorubicin studies with a dosing range of 10–267 mg/m2 , integrating the established doxorubicin model. DDI parameters determined in vitro were implemented to predict the impact of zoptarelin doxorubicin on possible victim drugs. Results In vitro, zoptarelin doxorubicin inhibits the drug transporters organic anion-transporting polypeptide 1B3 (OATP1B3) and organic cation transporter 2 (OCT2). The model was applied to evaluate the in vivo inhibition of these transporters in a generic manner, predicting worst-case scenario decreases of 0.5% for OATP1B3 and of 2.5% for OCT2 transport rates. Specific DDI simulations using PBPK models of simvastatin (OATP1B3 substrate) and metformin (OCT2 substrate) predict no significant changes of the plasma concentrations of these two victim drugs during co-administration. Conclusions The first whole-body PBPK model of zoptarelin doxorubicin and its active metabolite doxorubicin has been successfully established. Zoptarelin doxorubicin shows no potential for DDIs via OATP1B3 and OCT2.
DOI of the first publication: 10.1007/s00280-017-3495-2
URL of the first publication: https://doi.org/10.1007/s00280-017-3495-2
Link to this record: urn:nbn:de:bsz:291--ds-389619
hdl:20.500.11880/35144
http://dx.doi.org/10.22028/D291-38961
ISSN: 1432-0843
0344-5704
Date of registration: 8-Feb-2023
Description of the related object: Electronic supplementary material
Related object: https://static-content.springer.com/esm/art%3A10.1007%2Fs00280-017-3495-2/MediaObjects/280_2017_3495_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1007%2Fs00280-017-3495-2/MediaObjects/280_2017_3495_MOESM2_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1007%2Fs00280-017-3495-2/MediaObjects/280_2017_3495_MOESM3_ESM.pdf
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Pharmazie
Professorship: NT - Prof. Dr. Thorsten Lehr
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.