Please use this identifier to cite or link to this item: doi:10.22028/D291-38942
Volltext verfügbar? / Dokumentlieferung
Title: Novel models for the prediction of drug-gene interactions
Author(s): Türk, Denise
Fuhr, Laura Maria
Marok, Fatima Zahra
Rüdesheim, Simeon
Kühn, Anna
Selzer, Dominik
Schwab, Matthias
Lehr, Thorsten
Language: English
Title: Expert Opinion on Drug Metabolism & Toxicology
Volume: 17
Issue: 11
Pages: 1293-1310
Publisher/Platform: Taylor & Francis
Year of Publication: 2021
Free key words: Dose adaptation
drug–drug–gene interaction
drug–gene interaction
mathematical modeling
pharmacodynamics
pharmacogenetics
pharmacokinetics
physiologically based pharmacokinetics
population pharmacokinetics
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Adverse drug reactions (ADRs) are among the leading causes of death, and frequently associated with drug–gene interactions (DGIs). In addition to pharmacogenomic programs for implementation of genetic preemptive testing into clinical practice, mathematical modeling can help to understand, quantify and predict the effects of DGIs in vivo. Moreover, modeling can contribute to optimize prospective clinical drug trial activities and to reduce DGI-related ADRs.
DOI of the first publication: 10.1080/17425255.2021.1998455
URL of the first publication: https://doi.org/10.1080/17425255.2021.1998455
Link to this record: urn:nbn:de:bsz:291--ds-389423
hdl:20.500.11880/35128
http://dx.doi.org/10.22028/D291-38942
ISSN: 1744-7607
1742-5255
Date of registration: 7-Feb-2023
Description of the related object: Supplemental material
Related object: https://ndownloader.figstatic.com/files/31469258
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Pharmazie
Professorship: NT - Prof. Dr. Thorsten Lehr
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.