Please use this identifier to cite or link to this item: doi:10.22028/D291-38853
Volltext verfügbar? / Dokumentlieferung
Title: Barch: an English Dataset of Bar Chart Summaries
Author(s): Škrjanec, Iza
Salman Edhi, Muhammad
Demberg, Vera
Editor(s): Calzolari, Nicoletta
Language: English
Title: Language Resources and Evaluation Conference, LREC 2022, 20-25 June 2022 : Palais du Pharo, Marseille, France : conference proceedings
Pages: 3552-3560
Publisher/Platform: European Language Resources Association
Year of Publication: 2022
Place of publication: Paris
Place of the conference: Marseille, France
Free key words: chart summary
crowdsourcing
natural language generation
DDC notations: 004 Computer science, internet
Publikation type: Conference Paper
Abstract: We present Barch, a new English dataset of human-written summaries describing bar charts. This dataset contains 47 charts based on a selection of 18 topics. Each chart is associated with one of the four intended messages expressed in the chart title. Using crowdsourcing, we collected around 20 summaries per chart, or one thousand in total. The text of the summaries is aligned with the chart data as well as with analytical inferences about the data drawn by humans. Our datasets is one of the first to explore the effect of intended messages on the data descriptions in chart summaries. Additionally, it lends itself well to the task of training data-driven systems for chart-to-text generation. We provide results on the performance of state-of-the-art neural generation models trained on this dataset and discuss the strengths and shortcomings of different models.
URL of the first publication: https://aclanthology.org/2022.lrec-1.380/
Link to this record: urn:nbn:de:bsz:291--ds-388536
hdl:20.500.11880/35060
http://dx.doi.org/10.22028/D291-38853
ISBN: 979-10-95546-72-6
Date of registration: 31-Jan-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Vera Demberg
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.