Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-38851
Titel: | Design Choices in Crowdsourcing Discourse Relation Annotations: The Effect of Worker Selection and Training |
VerfasserIn: | Scholman, Merel Cleo Johanna Pyatkin, Valentina Yung, Frances Pikyu Dagan, Ido Tsarfaty, Reut Demberg, Vera |
HerausgeberIn: | Calzolari, Nicoletta |
Sprache: | Englisch |
Titel: | Language Resources and Evaluation Conference, LREC 2022, 20-25 June 2022 : Palais du Pharo, Marseille, France : conference proceedings |
Seiten: | 2148-2156 |
Verlag/Plattform: | European Language Resources Association |
Erscheinungsjahr: | 2022 |
Erscheinungsort: | Paris |
Konferenzort: | Marseille, France |
Freie Schlagwörter: | discourse annotations crowdsourcing training participant selection |
DDC-Sachgruppe: | 004 Informatik 400 Sprache, Linguistik |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | Obtaining linguistic annotation from novice crowdworkers is far from trivial. A case in point is the annotation of discourse relations, which is a complicated task. Recent methods have obtained promising results by extracting relation labels from either discourse connectives (DCs) or question-answer (QA) pairs that participants provide. The current contribution studies the effect of worker selection and training on the agreement on implicit relation labels between workers and gold labels, for both the DC and the QA method. In Study 1, workers were not specifically selected or trained, and the results show that there is much room for improvement. Study 2 shows that a combination of selection and training does lead to improved results, but the method is cost- and time-intensive. Study 3 shows that a selection-only approach is a viable alternative; it results in annotations of comparable quality compared to annotations from trained participants. The results generalized over both the DC and QA method and therefore indicate that a selection-only approach could also be effective for other crowdsourced discourse annotation tasks. |
URL der Erstveröffentlichung: | https://aclanthology.org/2022.lrec-1.231/ |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-388514 hdl:20.500.11880/35058 http://dx.doi.org/10.22028/D291-38851 |
ISBN: | 979-10-95546-72-6 |
Datum des Eintrags: | 31-Jan-2023 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Vera Demberg |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.