Please use this identifier to cite or link to this item: doi:10.22028/D291-38753
Volltext verfügbar? / Dokumentlieferung
Title: Predicting the gaze depth in head-mounted displays using multiple feature regression
Author(s): Weier, Martin
Roth, Thorsten
Hinkenjann, André
Slusallek, Philipp
Editor(s): Spencer, S.N.
Language: English
Title: ETRA '18: 2018 Symposium on Eye Tracking Research and Applications : Warsaw Poland, June 14 - 17, 2018
Publisher/Platform: Association for Computing Machinery
Year of Publication: 2018
Free key words: Accurate estimation
Control displays
Depth Estimation
Gaze-contingent
Head mounted displays
Multiple features
Point of regards
Regression model
DDC notations: 004 Computer science, internet
Publikation type: Conference Paper
Abstract: Head-mounted displays (HMDs) with integrated eye trackers have opened up a new realm for gaze-contingent rendering. The accurate estimation of gaze depth is essential when modeling the optical capabilities of the eye. Most recently multifocal displays are gaining importance, requiring focus estimates to control displays or lenses. Deriving the gaze depth solely by sampling the scene’s depth at the point-of-regard fails for complex or thin objects as eye tracking is suffering from inaccuracies. Gaze depth measures using the eye’s vergence only provide an accurate depth estimate for the first meter. In this work, we combine vergence measures and multiple depth measures into feature sets. This data is used to train a regression model to deliver improved estimates. We present a study showing that using multiple features allows for an accurate estimation of the focused depth (MSE<0.1m) over a wide range (first 6m). © 2018 Association for Computing Machinery.
DOI of the first publication: 10.1145/3204493.3204547
URL of the first publication: https://dl.acm.org/doi/10.1145/3204493.3204547
Link to this record: urn:nbn:de:bsz:291--ds-387535
hdl:20.500.11880/34913
http://dx.doi.org/10.22028/D291-38753
ISBN: 978-1-4503-5706-7
Date of registration: 19-Jan-2023
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Philipp Slusallek
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.