Please use this identifier to cite or link to this item: doi:10.22028/D291-38745
Volltext verfügbar? / Dokumentlieferung
Title: Optimal multiple importance sampling
Author(s): Kondapaneni, Ivo
Vevoda, Petr
Grittmann, Pascal
Skřivan, Tomáš
Slusallek, Philipp
Křivánek, Jaroslav
Language: English
Title: ACM Transactions on Graphics
Volume: 38
Issue: 4
Publisher/Platform: Association for Computing Machinery
Year of Publication: 2019
Free key words: Monte Carlo integration
Multiple Importance Sampling
combined estimators
DDC notations: 004 Computer science, internet
Publikation type: Journal Article
Abstract: Multiple Importance Sampling (MIS) is a key technique for achieving robustness of Monte Carlo estimators in computer graphics and other fields. We derive optimal weighting functions for MIS that provably minimize the variance of an MIS estimator, given a set of sampling techniques. We show that the resulting variance reduction over the balance heuristic can be higher than predicted by the variance bounds derived by Veach and Guibas, who assumed only non-negative weights in their proof. We theoretically analyze the variance of the optimal MIS weights and show the relation to the variance of the balance heuristic. Furthermore, we establish a connection between the new weighting functions and control variates as previously applied to mixture sampling. We apply the new optimal weights to integration problems in light transport and show that they allow for new design considerations when choosing the appropriate sampling techniques for a given integration problem.
DOI of the first publication: 10.1145/3306346.3323009
URL of the first publication: https://dl.acm.org/doi/10.1145/3306346.3323009
Link to this record: urn:nbn:de:bsz:291--ds-387458
hdl:20.500.11880/34906
http://dx.doi.org/10.22028/D291-38745
ISSN: 1557-7368
0730-0301
Date of registration: 18-Jan-2023
Description of the related object: Supplemental Material
Related object: https://dl.acm.org/action/downloadSupplement?doi=10.1145%2F3306346.3323009&file=papers_368.mp4
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Prof. Dr. Philipp Slusallek
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.